ISO/IEC 18000-3

Last updated

ISO/IEC 18000-3 [1] is an international standard for passive RFID item level identification and describes the parameters for air interface communications at 13.56 MHz. The target markets for MODE 2 are in tagging systems for manufacturing, logistics, retail, transport and airline baggage. MODE 2 is especially suitable for high speed bulk conveyor fed applications. [2]

Contents

General description

MODE 2 RFID tags are passive deriving their power from the interrogating signal generated by an RFID interrogator. Power is transferred from the interrogator to the tag by a high-frequency magnetic field using coupled antennae coils in the reader and the tag. The powering field frequency is 13.56 MHz ± 7 kHz.

Dialogue between the interrogator and the tag is conducted on an Interrogator-Talks-First (ITF) basis. Following activation of the tag by the interrogator’s interrogating signal the tag waits silently for a valid command. After receiving a valid command the tag transmits a reply in response to the command. The air interface operates as a full-duplex communication link. The interrogator operates with full-duplex transmissions being able to transmit commands while simultaneously receiving multiple tag replies. Tags operate with half-duplex transmissions.

Commands are transmitted from the interrogator to the tag by phase-jitter modulation (PJM) [3] of the powering field. PJM transmits data as very small phase changes in the powering field. There is no reduction in the transfer of power to the tag during PJM, and the bandwidth of PJM is no wider than the original double-sided spectrum of the data. The PJM sideband levels and data rates are decoupled, allowing the sideband levels to be set at any arbitrary level without affecting the data rate. The command data rate is 423.75 kbit/s encoded using modified frequency modulation (MFM).

Tags reply to the interrogator by inductive coupling whereby the voltage across the tag antenna coil is modulated by a subcarrier. The subcarrier is derived from division of the powering field frequency. Tags can select from one of eight subcarrier frequencies between 969 kHz and 3013 kHz. The reply data rate is 105.9375 kbit/s encoded using MFM and modulated onto the subcarrier as binary phase-shift keying (BPSK). To ensure that tags replying on different channels are simultaneously received, tag replies are band-limited to reduce data and subcarrier harmonic levels. [4]

Multiple-tag identification is performed using a combination of frequency-division multiple access and time-division multiple access (FTDMA). [5] There are eight reply channels available for tags to use. In response to a valid command each tag randomly selects a channel on which to transmit its reply. The reply is transmitted once using the selected channel. Upon receiving the next valid command each tag randomly selects a new channel and transmits the reply using the newly selected channel. This method of reply frequency hopping using random channel selection is repeated for each subsequent valid command. The interrogator can selectively mute identified tags to remove them from the identification process. When a tag is muted, the tag will not transmit any replies. In addition to random channel selection the tags can randomly mute individual replies. When a reply is muted, the tag will not transmit that reply. Random muting is necessary when identifying very large populations of tags during singulation. All FTDMA frequency and time parameters are defined by the command.

All commands are time-stamped, and tags store the first time stamp received after entering an interrogator. The stored time stamp defines precisely when the tag first entered the interrogator and provides a high-resolution method of determining tag order, which is decoupled from the speed of identification. [6] Tag temporary settings, such as the time stamp, are stored in temporary random-access memory (TRAM) [7] that retains data contents during power outages caused by switching of the powering field in orientation-insensitive interrogators. [8]

Applications

Primary applications are in RFID tags for use in gaming, healthcare, pharmaceuticals, document and media management. The German identity card contains an ISO/IEC 18000-3 and ISO/IEC 14443 type A compatible 13.56 MHz RFID chip that uses the ISO/IEC 7816 protocols. [9] [10]

See also

Related Research Articles

<span class="mw-page-title-main">Transponder</span> Device that emits an identifying signal in response to a received signal

In telecommunications, a transponder is a device that, upon receiving a signal, emits a different signal in response. The term is a blend of transmitter and responder.

Radio-frequency identification (RFID) uses electromagnetic fields to automatically identify and track tags attached to objects. An RFID system consists of a tiny radio transponder, a radio receiver and transmitter. When triggered by an electromagnetic interrogation pulse from a nearby RFID reader device, the tag transmits digital data, usually an identifying inventory number, back to the reader. This number can be used to track inventory goods.

ISO/IEC 14443Identification cards -- Contactless integrated circuit cards -- Proximity cards is an international standard that defines proximity cards used for identification, and the transmission protocols for communicating with it.

<span class="mw-page-title-main">Proximity card</span> Contactless smart card

A proximity card or prox card also known as a key card or keycard is a contactless smart card which can be read without inserting it into a reader device, as required by earlier magnetic stripe cards such as credit cards and contact type smart cards. The proximity cards are part of the contactless card technologies. Held near an electronic reader for a moment they enable the identification of an encoded number. The reader usually produces a beep or other sound to indicate the card has been read.

<span class="mw-page-title-main">Near-field communication</span> Radio communication established between devices by bringing them into proximity

Near-field communication (NFC) is a set of communication protocols that enables communication between two electronic devices over a distance of 4 cm (1.57 in) or less. NFC offers a low-speed connection through a simple setup that can be used to bootstrap more capable wireless connections. Like other "proximity card" technologies, NFC is based on inductive coupling between two antennas present on NFC-enabled devices—for example a smartphone and a printer—communicating in one or both directions, using a frequency of 13.56 MHz in the globally available unlicensed radio frequency ISM band using the ISO/IEC 18000-3 air interface standard at data rates ranging from 106 to 848 kbit/s.

ISO/IEC 15693, is an ISO/IEC standard for vicinity cards, i.e. cards which can be read from a greater distance as compared with proximity cards. Such cards can normally be read out by a reader without being powered themselves, as the reader will supply the necessary power to the card over the air (wireless).

ISO 11784 and ISO 11785 are international standards that regulate the radio-frequency identification (RFID) of animals, which is usually accomplished by implanting, introducing or attaching a transponder containing a microchip to an animal.


A contactless smart card is a contactless credential whose dimensions are credit card size. Its embedded integrated circuits can store data and communicate with a terminal via NFC. Commonplace uses include transit tickets, bank cards and passports.

Mobile RFID (M-RFID) are services that provide information on objects equipped with an RFID tag over a telecommunication network. The reader or interrogator can be installed in a mobile device such as a mobile phone or PDA.

Real-time locating systems (RTLS), also known as real-time tracking systems, are used to automatically identify and track the location of objects or people in real time, usually within a building or other contained area. Wireless RTLS tags are attached to objects or worn by people, and in most RTLS, fixed reference points receive wireless signals from tags to determine their location. Examples of real-time locating systems include tracking automobiles through an assembly line, locating pallets of merchandise in a warehouse, or finding medical equipment in a hospital.

Phase-jitter modulation (PJM) is a modulation method specifically designed to meet the unique requirements of passive RFID tags. It has been adopted by the high-frequency RFID Air Interface Standard ISO/IEC 18000-3 MODE 2 for high-speed bulk conveyor-fed item-level identification because of its demonstrably higher data rates. The MODE 2 PJM data rate is 423,75 kbit/s; 16 times faster than the alternative MODE 1 system ISO/IEC 18000-3 MODE 1 and the legacy HF system ISO/IEC 15693.

DASH7 Alliance Protocol (D7A) is an open-source wireless sensor and actuator network protocol, which operates in the 433 MHz, 868 MHz and 915 MHz unlicensed ISM band/SRD band. DASH7 provides multi-year battery life, range of up to 2 km, low latency for connecting with moving things, a very small open-source protocol stack, AES 128-bit shared-key encryption support, and data transfer of up to 167 kbit/s. The DASH7 Alliance Protocol is the name of the technology promoted by the non-profit consortium called the DASH7 Alliance.

<span class="mw-page-title-main">Josef Preishuber-Pflügl</span> Austrian technology leader

Josef Preishuber-Pflügl is an Austrian technology leader.

IEC 60870 part 5 is one of the IEC 60870 set of standards which define systems used for telecontrol in electrical engineering and power system automation applications. Part 5 provides a communication profile for sending basic telecontrol messages between two systems, which uses permanent directly connected data circuits between the systems. The IEC Technical Committee 57 have developed a protocol standard for telecontrol, teleprotection, and associated telecommunications for electric power systems. The result of this work is IEC 60870-5. Five documents specify the base IEC 60870-5:

RFID is a wireless technology supported by many different vendors for tags and readers. In order to ensure global operability of the products multiple test standards have been developed. Furthermore, standardization organizations like ETSI organize RFID Plugtests, where products from multiple vendors are tested against each other in order to ensure interoperability.

CISC Semiconductor GmbH defines itself as “design and consulting service company for industries developing embedded microelectronic systems with extremely short Time-To-Market cycles.” The company started in 1999, working in the semiconductor industry, but soon expanded its field towards the automotive branch and further extended business towards the radio frequency technology (RFID) sector in 2003. Since then, CISC gained significant experience and expertise in RFID, developing an own business segment and highly sensitive measurement equipment to test and verify RFID systems for different industries. Representatives of CISC Semiconductor are actively working on and contributing to worldwide standardization of future technologies like RFID, in different standardization organizations. This effort brings CISC into the position of being a leader in research and development, and thus being able to be “one step ahead of innovation”. As of 2011 CISC Semiconductor is in a globally leading standardization position for RFID testing by providing the convener of ISO/IEC JTC1 WG4/SG6 on “RFID performance and conformance test methods“, as well as GS1 EPCglobal co-chairs for performance and conformance tests.

The ISO/IEC 18000-7 air interface standard was originally ratified in 2004, modified once in 2008, and modified again to its current version in 2014. ISO/IEC 18000-7:2014 provides technical specifications for radio-frequency identification (RFID) devices operating in the 433 MHz band.

ISO/IEC 20248Automatic Identification and Data Capture Techniques – Data Structures – Digital Signature Meta Structure is an international standard specification under development by ISO/IEC JTC 1/SC 31/WG 2. This development is an extension of SANS 1368, which is the current published specification. ISO/IEC 20248 and SANS 1368 are equivalent standard specifications. SANS 1368 is a South African national standard developed by the South African Bureau of Standards.

Frequency bands for 5G New Radio, which is the air interface or radio access technology of the 5G mobile networks, are separated into two different frequency ranges. First there is Frequency Range 1 (FR1), which includes sub-6 GHz frequency bands, some of which are traditionally used by previous standards, but has been extended to cover potential new spectrum offerings from 410 MHz to 7125 MHz. The other is Frequency Range 2 (FR2), which includes frequency bands from 24.25 GHz to 71.0 GHz. Frequency bands are also available for non-terrestrial networks (NTN) in the sub-6 GHz range.

References

  1. ISO/IEC 18000-3:2010 Information technology -- Radio frequency identification for item management -- Part 3: Parameters for air interface communications at 13.56 MHz
  2. ISO/IEC 18000-3 Section 8 Table of characteristic differences between the MODES
  3. WO/1999/034526 "A Transmitter and a Method for Transmitting Data".
  4. WO/1999/039450 "A Transceiver".
  5. WO/1989/005549 "Identification Apparatus and Methods".
  6. WO/2001/065712 "Radio Frequency identification Transponder".
  7. WO/2007/030863 "An Improved RFID Device".
  8. WO/1989/005530 "Antenna Structure for Providing a Uniform Field".
  9. Fumy, Walter; Paeschke, Manfred, eds. (13 December 2010). Handbook of EID Security: Concepts, Practical Experiences, Technologies. John Wiley & Sons. p. 49. ISBN   978-3-89578-658-7.
  10. Hochstätter, Christoph H. (23 June 2010). "Neuer Personalausweis: Wo die wirklichen Gefahren lauern" [New Identity Card: Where are the real dangers lurk]. ZDNet.