Kellogg's theorem

Last updated

Kellogg's theorem is a pair of related results in the mathematical study of the regularity of harmonic functions on sufficiently smooth domains by Oliver Dimon Kellogg.

In the first version, it states that, for , if the domain's boundary is of class and the k-th derivatives of the boundary are Dini continuous, then the harmonic functions are uniformly as well. The second, more common version of the theorem states that for domains which are , if the boundary data is of class , then so is the harmonic function itself.

Kellogg's method of proof analyzes the representation of harmonic functions provided by the Poisson kernel, applied to an interior tangent sphere.

In modern presentations, Kellogg's theorem is usually covered as a specific case of the boundary Schauder estimates for elliptic partial differential equations.

See also

Sources


Related Research Articles

In vector calculus and differential geometry, the generalized Stokes theorem, also called the Stokes–Cartan theorem, is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus. It is a generalization of Isaac Newton's fundamental theorem of calculus that relates two-dimensional line integrals to three-dimensional surface integrals.

Partial differential equation Multivariable functions and their partial derivatives

In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function.

Harmonic function Functions in mathematics

In mathematics, mathematical physics and the theory of stochastic processes, a harmonic function is a twice continuously differentiable function f : UR, where U is an open subset of Rn, that satisfies Laplace's equation, that is,

Elliptic operator

In the theory of partial differential equations, elliptic operators are differential operators that generalize the Laplace operator. They are defined by the condition that the coefficients of the highest-order derivatives be positive, which implies the key property that the principal symbol is invertible, or equivalently that there are no real characteristic directions.

In mathematics, a Dirichlet problem is the problem of finding a function which solves a specified partial differential equation (PDE) in the interior of a given region that takes prescribed values on the boundary of the region.

In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of Lp-norms of the function together with its derivatives up to a given order. The derivatives are understood in a suitable weak sense to make the space complete, i.e. a Banach space. Intuitively, a Sobolev space is a space of functions possessing sufficiently many derivatives for some application domain, such as partial differential equations, and equipped with a norm that measures both the size and regularity of a function.

In mathematical analysis a pseudo-differential operator is an extension of the concept of differential operator. Pseudo-differential operators are used extensively in the theory of partial differential equations and quantum field theory.

In the mathematical fields of partial differential equations and geometric analysis, the maximum principle refers to a collection of results and techniques of fundamental importance in the study of elliptic and parabolic differential equations.

In mathematics, a hyperbolic partial differential equation of order is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first derivatives. More precisely, the Cauchy problem can be locally solved for arbitrary initial data along any non-characteristic hypersurface. Many of the equations of mechanics are hyperbolic, and so the study of hyperbolic equations is of substantial contemporary interest. The model hyperbolic equation is the wave equation. In one spatial dimension, this is

In mathematics, a Cauchyboundary condition augments an ordinary differential equation or a partial differential equation with conditions that the solution must satisfy on the boundary; ideally so to ensure that a unique solution exists. A Cauchy boundary condition specifies both the function value and normal derivative on the boundary of the domain. This corresponds to imposing both a Dirichlet and a Neumann boundary condition. It is named after the prolific 19th-century French mathematical analyst Augustin Louis Cauchy.

In the mathematical field of analysis, the Nash–Moser theorem, discovered by mathematician John Forbes Nash and named for him and Jürgen Moser, is a generalization of the inverse function theorem on Banach spaces to settings when the required solution mapping for the linearized problem is not bounded.

In mathematics, Harnack's inequality is an inequality relating the values of a positive harmonic function at two points, introduced by A. Harnack (1887). J. Serrin (1955), and J. Moser generalized Harnack's inequality to solutions of elliptic or parabolic partial differential equations. Perelman's solution of the Poincaré conjecture uses a version of the Harnack inequality, found by R. Hamilton (1993), for the Ricci flow. Harnack's inequality is used to prove Harnack's theorem about the convergence of sequences of harmonic functions. Harnack's inequality can also be used to show the interior regularity of weak solutions of partial differential equations.

In the mathematical field of differential geometry, a smooth map from one Riemannian manifold to another Riemannian manifold is called harmonic if its coordinate representatives satisfy a certain nonlinear partial differential equation. This partial differential equation for a mapping also arises as the Euler-Lagrange equation of a functional generalizing the Dirichlet energy. As such, the theory of harmonic maps encompasses both the theory of unit-speed geodesics in Riemannian geometry, and the theory of harmonic functions on open subsets of Euclidean space and on Riemannian manifolds.

In mathematics, there is in mathematical analysis a class of Sobolev inequalities, relating norms including those of Sobolev spaces. These are used to prove the Sobolev embedding theorem, giving inclusions between certain Sobolev spaces, and the Rellich–Kondrachov theorem showing that under slightly stronger conditions some Sobolev spaces are compactly embedded in others. They are named after Sergei Lvovich Sobolev.

In Riemannian geometry, a branch of mathematics, harmonic coordinates are a certain kind of coordinate chart on a smooth manifold, determined by a Riemannian metric on the manifold. They are useful in many problems of geometric analysis due to their regularity properties.

A parabolic partial differential equation is a type of partial differential equation (PDE). Parabolic PDEs are used to describe a wide variety of time-dependent phenomena, including heat conduction, particle diffusion, and pricing of derivative investment instruments.

Elliptic boundary value problem

In mathematics, an elliptic boundary value problem is a special kind of boundary value problem which can be thought of as the stable state of an evolution problem. For example, the Dirichlet problem for the Laplacian gives the eventual distribution of heat in a room several hours after the heating is turned on.

In mathematics, the symbol of a linear differential operator is a polynomial representing a differential operator, which is obtained, roughly speaking, by replacing each partial derivative by a new variable. The symbol of a differential operator has broad applications to Fourier analysis. In particular, in this connection it leads to the notion of a pseudo-differential operator. The highest-order terms of the symbol, known as the principal symbol, almost completely controls the qualitative behavior of solutions of a partial differential equation. Linear elliptic partial differential equations can be characterized as those whose principal symbol is nowhere zero. In the study of hyperbolic and parabolic partial differential equations, zeros of the principal symbol correspond to the characteristics of the partial differential equation. Consequently, the symbol is often fundamental for the solution of such equations, and is one of the main computational devices used to study their singularities.

In mathematics, the Schauder estimates are a collection of results due to Juliusz Schauder concerning the regularity of solutions to linear, uniformly elliptic partial differential equations. The estimates say that when the equation has appropriately smooth terms and appropriately smooth solutions, then the Hölder norm of the solution can be controlled in terms of the Hölder norms for the coefficient and source terms. Since these estimates assume by hypothesis the existence of a solution, they are called a priori estimates.

In mathematics, the Gagliardo–Nirenberg interpolation inequality is a result in the theory of Sobolev spaces that estimates the weak derivatives of a function. The estimates are in terms of Lp norms of the function and its derivatives, and the inequality “interpolates” among various values of p and orders of differentiation, hence the name. The result is of particular importance in the theory of elliptic partial differential equations. It was proposed by Louis Nirenberg and Emilio Gagliardo.