Khinchin's constant

Last updated

In number theory, Aleksandr Yakovlevich Khinchin proved that for almost all real numbers x, coefficients ai of the continued fraction expansion of x have a finite geometric mean that is independent of the value of x and is known as Khinchin's constant.

Contents

That is, for

it is almost always true that

where is Khinchin's constant

(sequence A002210 in the OEIS )

(with denoting the product over all sequence terms).

Although almost all numbers satisfy this property, it has not been proven for any real number not specifically constructed for the purpose. Among the numbers whose continued fraction expansions apparently do have this property (based on numerical evidence) are π, the Euler-Mascheroni constant γ, Apéry's constant ζ(3), and Khinchin's constant itself. However, this is unproven.

Among the numbers x whose continued fraction expansions are known not to have this property are rational numbers, roots of quadratic equations (including the golden ratio Φ and the square roots of integers), and the base of the natural logarithm e.

Khinchin is sometimes spelled Khintchine (the French transliteration of Russian Хинчин) in older mathematical literature.

Sketch of proof

The proof presented here was arranged by Czesław Ryll-Nardzewski [1] and is much simpler than Khinchin's original proof which did not use ergodic theory.

Since the first coefficient a0 of the continued fraction of x plays no role in Khinchin's theorem and since the rational numbers have Lebesgue measure zero, we are reduced to the study of irrational numbers in the unit interval, i.e., those in . These numbers are in bijection with infinite continued fractions of the form [0; a1, a2, ...], which we simply write [a1, a2, ...], where a1, a2, ... are positive integers. Define a transformation T:I  I by

The transformation T is called the Gauss–Kuzmin–Wirsing operator. For every Borel subset E of I, we also define the GaussKuzmin measure of E

Then μ is a probability measure on the σ-algebra of Borel subsets of I. The measure μ is equivalent to the Lebesgue measure on I, but it has the additional property that the transformation T preserves the measure μ. Moreover, it can be proved that T is an ergodic transformation of the measurable space I endowed with the probability measure μ (this is the hard part of the proof). The ergodic theorem then says that for any μ-integrable function f on I, the average value of is the same for almost all :

Applying this to the function defined by f([a1, a2, ...]) = log(a1), we obtain that

for almost all [a1, a2, ...] in I as n  .

Taking the exponential on both sides, we obtain to the left the geometric mean of the first n coefficients of the continued fraction, and to the right Khinchin's constant.

Series expressions

Khinchin's constant may be expressed as a rational zeta series in the form [2]

or, by peeling off terms in the series,

where N is an integer, held fixed, and ζ(s, n) is the complex Hurwitz zeta function. Both series are strongly convergent, as ζ(n)  1 approaches zero quickly for large n. An expansion may also be given in terms of the dilogarithm:

Hölder means

The Khinchin constant can be viewed as the first in a series of the Hölder means of the terms of continued fractions. Given an arbitrary series {an}, the Hölder mean of order p of the series is given by

When the {an} are the terms of a continued fraction expansion, the constants are given by

This is obtained by taking the p-th mean in conjunction with the Gauss–Kuzmin distribution. This is finite when .

The arithmetic average diverges: , and so the coefficients grow arbitrarily large: .

The value for K0 is obtained in the limit of p  0.

The harmonic mean (p = 1) is

(sequence A087491 in the OEIS ).

Open problems

The limit
lim
n
-
[?]
(
p
1
p
2
.
.
.
p
n
)
1
/
n
{\displaystyle \lim _{n\rightarrow \infty }(\pi _{1}\pi _{2}...\pi _{n})^{1/n}}
seems to tend to Khinchin's constant. Khinchin constant and pi.png
The limit seems to tend to Khinchin's constant.

See also

Related Research Articles

<span class="mw-page-title-main">Gamma function</span> Extension of the factorial function

In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n,

In mathematics, the classic Möbius inversion formula is a relation between pairs of arithmetic functions, each defined from the other by sums over divisors. It was introduced into number theory in 1832 by August Ferdinand Möbius.

<span class="mw-page-title-main">Riemann zeta function</span> Analytic function in mathematics

The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as

The Liouville lambda function, denoted by λ(n) and named after Joseph Liouville, is an important arithmetic function. Its value is +1 if n is the product of an even number of prime numbers, and −1 if it is the product of an odd number of primes.

<span class="mw-page-title-main">Euler's constant</span> Constant value used in mathematics

Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:

<span class="mw-page-title-main">Harmonic number</span> Sum of the first n whole number reciprocals; 1/1 + 1/2 + 1/3 + ... + 1/n

In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers:

<span class="mw-page-title-main">Prime-counting function</span> Function representing the number of primes less than or equal to a given number

In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. It is denoted by π(x) (unrelated to the number π).

In mathematics, a Dirichlet series is any series of the form

In mathematics, the ratio test is a test for the convergence of a series

<span class="mw-page-title-main">Mertens function</span> Summatory function of the Möbius function

In number theory, the Mertens function is defined for all positive integers n as

<span class="mw-page-title-main">Polylogarithm</span> Special mathematical function

In mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function Lis(z) of order s and argument z. Only for special values of s does the polylogarithm reduce to an elementary function such as the natural logarithm or a rational function. In quantum statistics, the polylogarithm function appears as the closed form of integrals of the Fermi–Dirac distribution and the Bose–Einstein distribution, and is also known as the Fermi–Dirac integral or the Bose–Einstein integral. In quantum electrodynamics, polylogarithms of positive integer order arise in the calculation of processes represented by higher-order Feynman diagrams.

The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up more than a century later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.

In mathematics, the Gauss–Kuzmin–Wirsing operator is the transfer operator of the Gauss map that takes a positive number to the fractional part of its reciprocal. It is named after Carl Gauss, Rodion Kuzmin, and Eduard Wirsing. It occurs in the study of continued fractions; it is also related to the Riemann zeta function.

In mathematics, the von Mangoldt function is an arithmetic function named after German mathematician Hans von Mangoldt. It is an example of an important arithmetic function that is neither multiplicative nor additive.

<span class="mw-page-title-main">Gauss–Kuzmin distribution</span>

In mathematics, the Gauss–Kuzmin distribution is a discrete probability distribution that arises as the limit probability distribution of the coefficients in the continued fraction expansion of a random variable uniformly distributed in (0, 1). The distribution is named after Carl Friedrich Gauss, who derived it around 1800, and Rodion Kuzmin, who gave a bound on the rate of convergence in 1929. It is given by the probability mass function

In number theory, an average order of an arithmetic function is some simpler or better-understood function which takes the same values "on average".

The decimal value of the natural logarithm of 2 is approximately

In mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function. For infinite compositions of a single function see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system.

Stochastic portfolio theory (SPT) is a mathematical theory for analyzing stock market structure and portfolio behavior introduced by E. Robert Fernholz in 2002. It is descriptive as opposed to normative, and is consistent with the observed behavior of actual markets. Normative assumptions, which serve as a basis for earlier theories like modern portfolio theory (MPT) and the capital asset pricing model (CAPM), are absent from SPT.

References

  1. Ryll-Nardzewski, Czesław (1951), "On the ergodic theorems II (Ergodic theory of continued fractions)", Studia Mathematica, 12: 74–79, doi:10.4064/sm-12-1-74-79
  2. Bailey, Borwein & Crandall, 1997. In that paper, a slightly non-standard definition is used for the Hurwitz zeta function.
  3. Weisstein, Eric W. "Euler-Mascheroni Constant Continued Fraction". mathworld.wolfram.com. Retrieved 2020-03-23.
  4. Weisstein, Eric W. "Pi Continued Fraction". mathworld.wolfram.com. Retrieved 2020-03-23.
  5. Weisstein, Eric W. "Khinchin's constant". MathWorld .