Kirkman's schoolgirl problem

Last updated

Kirkman's schoolgirl problem is a problem in combinatorics proposed by Thomas Penyngton Kirkman in 1850 as Query VI in The Lady's and Gentleman's Diary (pg.48). The problem states:

Contents

Fifteen young ladies in a school walk out three abreast for seven days in succession: it is required to arrange them daily so that no two shall walk twice abreast. [1]

Solutions

A solution to this problem is an example of a Kirkman triple system, [2] which is a Steiner triple system having a parallelism, that is, a partition of the blocks of the triple system into parallel classes which are themselves partitions of the points into disjoint blocks. Such Steiner systems that have a parallelism are also called resolvable.

There are exactly seven non-isomorphic solutions to the schoolgirl problem, as originally listed by Frank Nelson Cole in Kirkman Parades in 1922. [3] The seven solutions are summarized in the table below, denoting the 15 girls with the letters A to O.

Solution class Automorphism group Day 1Day 2Day 3Day 4Day 5Day 6Day 7
Solution IOrder 168, generated by
(A K G E I L B)(C H M J N O D)
and
(A M L K O C D)(B H N G I E J).
Related to PG(3,2).
ABC
DEF
GHI
JKL
MNO
ADG
BEH
CJM
FKN
ILO
AEO
BIJ
CDN
FHL
GKM
AIM
BDL
CEK
FGO
HJN
AFJ
BKO
CGL
DHM
EIN
AHK
BGN
CFI
DJO
ELM
ALN
BFM
CHO
DIK
EGJ
Solution IIOrder 168, generated by
(A B I M F C J)(D N H K O L E)
and
(A J M I B F C)(D H G N K E O).
Related to PG(3,2).
ABC
DEF
GHI
JKL
MNO
ADG
BEH
CJM
FKN
ILO
AEO
BIJ
CDN
FHL
GKM
AFJ
BGN
CHO
DIK
ELM
AHK
BFM
CGL
DJO
EIN
AIM
BDL
CEK
FGO
HJN
ALN
BKO
CFI
DHM
EGJ
Solution IIIOrder 24, generated by
(A H E)(B O K)(C F I)(D J L)(G N M)
and
(A J B M)(D L E O)(F I)(G K H N)
ABC
DEF
GHI
JKL
MNO
ADG
BEH
CJM
FKN
ILO
AEO
BIM
CDK
FGL
HJN
AFM
BGN
CHL
DJO
EIK
AHK
BFJ
CGO
DIN
ELM
AIJ
BDL
CEN
FHO
GKM
ALN
BKO
CFI
DHM
EGJ
Solution IVOrder 24, generated by
(A J M)(C F I)(D E K)(H O L)
and
(A L B O)(C I)(D K E N)(G J H M)
ABC
DEF
GHI
JKL
MNO
ADG
BEH
CJM
FKN
ILO
AEO
BIM
CDK
FGL
HJN
AFM
BKO
CHL
DIN
EGJ
AHK
BGN
CFI
DJO
ELM
AIJ
BDL
CEN
FHO
GKM
ALN
BFJ
CGO
DHM
EIK
Solution V Tetrahedral group of order 12,
generated by
(A L)(B G)(E O)(F J)(H K)(I M)
and
(A B C)(D L G)(F J I)(E K H)
ABC
DEF
GHI
JKL
MNO
ADG
BEJ
CHM
FKN
ILO
AEM
BDL
CIK
FGO
HJN
AFH
BKM
CGL
DJO
EIN
AIJ
BGN
CEO
DHK
FLM
AKO
BFI
CDN
EHL
GJM
ALN
BHO
CFJ
DIM
EGK
Solution VI Tetrahedral group of order 12,
generated by
(A L)(B G)(E O)(H K)(F J)(I M)
and
(A B C)(D L G)(E K H)(F J I)
ABC
DEF
GHI
JKL
MNO
ADG
BEJ
CHM
FKN
ILO
AEM
BDL
CIK
FGO
HJN
AFH
BKM
CGL
DJO
EIN
AIJ
BHO
CDN
EGK
FLM
AKO
BGN
CFJ
DIM
EHL
ALN
BFI
CEO
DHK
GJM
Solution VIIOrder 21, generated by
(A B L C G D N)(E H K I O J F)
and
(B G L)(C D N)(E F K)(H I O)
ABC
DEF
GHI
JKL
MNO
ADG
BEJ
CHM
FKN
ILO
AEI
BDN
CJO
FHL
GKM
AFO
BIK
CGN
DHJ
ELM
AHK
BFM
CDL
EGO
IJN
AJM
BGL
CFI
DKO
EHN
ALN
BHO
CEK
FGJ
DIM

From the number of automorphisms for each solution and the definition of an automorphism group, the total number of solutions including isomorphic solutions is therefore:

.

History

Original publication of the problem LGDiary CoverAndPage.jpg
Original publication of the problem

The problem has a long and storied history. This section is based on historical work done at different times by Robin Wilson [4] and by Louise Duffield Cummings. [5] The history is as follows:

Sylvester's problem

James Joseph Sylvester in 1850 asked if 13 disjoint Kirkman systems of 35 triples each could be constructed to use all triples on 15 girls. No solution was found until 1974 when RHF Denniston at the University of Leicester constructed it with a computer. [20] Denniston's insight was to create a single-week Kirkman solution in such a way that it could be permuted according to a specific permutation of cycle length 13 to create disjoint solutions for subsequent weeks; he chose a permutation with a single 13-cycle and two fixed points like (1 2 3 4 5 6 7 8 9 10 11 12 13)(14)(15). Under this permutation, a triple like 123 would map to 234, 345, ... (11, 12, 13), (12, 13, 1) and (13, 1, 2) before repeating. Denniston thus classified the 455 triples into 35 rows of 13 triples each, each row being the orbit of a given triple under the permutation. [20] In order to construct a Sylvester solution, no single-week Kirkman solution could use two triples from the same row, otherwise they would eventually collide when the permutation was applied to one of them. Solving Sylvester's problem is equivalent to finding one triple from each of the 35 rows such that the 35 triples together make a Kirkman solution. He then asked an Elliott 4130 computer to do exactly that search, which took him 7 hours to find this first-week solution, [20] labeling the 15 girls with the letters A to O:

Day 1 ABJ CEM FKL HIN DGO Day 2 ACH DEI FGM JLN BKO Day 3 ADL BHM GIK CFN EJO Day 4 AEG BIL CJK DMN FHO Day 5 AFI BCD GHJ EKN LMO Day 6 AKM DFJ EHL BGN CIO Day 7 BEF CGL DHK IJM ANO 

He stopped the search at that point, not looking to establish uniqueness. [20]

The American minimalist composer Tom Johnson composed a piece of music called Kirkman's Ladies based on Denniston's solution. [21] [22]

As of 2021, it is not known whether there are other non-isomorphic solutions to Sylvester's problem, or how many solutions there are.

9 schoolgirls and extensions

The equivalent of the Kirkman problem for 9 schoolgirls results in S(2,3,9), an affine plane isomorphic to the following triples on each day:

Day 1: 123 456 789 Day 2: 147 258 369 Day 3: 159 267 348 Day 4: 168 249 357 

The corresponding Sylvester problem asks for 7 different S(2,3,9) systems of 12 triples each, together covering all triples. This solution was known to Bays (1917) which was found again from a different direction by Earl Kramer and Dale Mesner in a 1974 paper titled Intersections Among Steiner Systems (J Combinatorial Theory, Vol 16 pp 273-285). There can indeed be 7 disjoint S(2,3,9) systems, and all such sets of 7 fall into two non-isomorphic categories of sizes 8640 and 6720, with 42 and 54 automorphisms respectively.

Solution 1:              Day 1          Day 2          Day 3          Day 4 Week 1    ABC.DEF.GHI    ADG.BEH.CFI    AEI.BFG.CDH    AFH.BDI.CEG Week 2    ABD.CEH.FGI    ACF.BGH.DEI    AEG.BCI.DFH    AHI.BEF.CDG Week 3    ABE.CDI.FGH    ACG.BDF.EHI    ADH.BGI.CEF    AFI.BCH.DEG Week 4    ABF.CEI.DGH    ACD.BHI.EFG    AEH.BCG.DFI    AGI.BDE.CFH Week 5    ABG.CDE.FHI    ACH.BEI.DFG    ADI.BCF.EGH    AEF.BDH.CGI Week 6    ABH.CDF.EGI    ACI.BDG.EFH    ADE.BFI.CGH    AFG.BCE.DHI Week 7    ABI.CFG.DEH    ACE.BFH.DGI    ADF.BEG.CHI    AGH.BCD.EFI 

Solution 1 has 42 automorphisms, generated by the permutations (A I D C F H)(B G) and (C F D H E I)(B G). Applying the 9! = 362880 permutations of ABCDEFGHI, there are 362880/42 = 8640 different solutions all isomorphic to Solution 1.

Solution 2:              Day 1          Day 2          Day 3          Day 4 Week 1    ABC.DEF.GHI    ADG.BEH.CFI    AEI.BFG.CDH    AFH.BDI.CEG Week 2    ABD.CEH.FGI    ACF.BGH.DEI    AEG.BCI.DFH    AHI.BEF.CDG Week 3    ABE.CGH.DFI    ACI.BFH.DEG    ADH.BGI.CEF    AFG.BCD.EHI Week 4    ABF.CGI.DEH    ACE.BDG.FHI    ADI.BCH.EFG    AGH.BEI.CDF Week 5    ABG.CDI.EFH    ACH.BDF.EGI    ADE.BHI.CFG    AFI.BCE.DGH Week 6    ABH.CEI.DFG    ACD.BFI.EGH    AEF.BCG.DHI    AGI.BDE.CFH Week 7    ABI.CDE.FGH    ACG.BDH.EFI    ADF.BEG.CHI    AEH.BCF.DGI 

Solution 2 has 54 automorphisms, generated by the permutations (A B D)(C H E)(F G I) and (A I F D E H)(B G). Applying the 9! = 362880 permutations of ABCDEFGHI, there are 362880/54 = 6720 different solutions all isomorphic to Solution 2.

Thus there are 8640 + 6720 = 15360 solutions in total, falling into two non-isomorphic categories.

In addition to S(2,3,9), Kramer and Mesner examined other systems that could be derived from S(5,6,12) and found that there could be up to 2 disjoint S(5,6,12) systems, up to 2 disjoint S(4,5,11) systems, and up to 5 disjoint S(3,4,10) systems. All such sets of 2 or 5 are respectively isomorphic to each other.

Larger systems and continuing research

In the 21st century, analogues of Sylvester's problem have been visited by other authors under terms like "Disjoint Steiner systems" or "Disjoint Kirkman systems" or "LKTS" (Large Sets of Kirkman Triple Systems), for n > 15. [23] Similar sets of disjoint Steiner systems have also been investigated for the S(5,8,24) Steiner system in addition to triple systems. [24]

Galois geometry

In 1910 the problem was addressed using Galois geometry by George Conwell. [25]

The Galois field GF(2) with two elements is used with four homogeneous coordinates to form PG(3,2) which has 15 points, 3 points to a line, 7 points and 7 lines in a plane. A plane can be considered a complete quadrilateral together with the line through its diagonal points. Each point is on 7 lines, and there are 35 lines in all.

The lines of PG(3,2) are identified by their Plücker coordinates in PG(5,2) with 63 points, 35 of which represent lines of PG(3,2). These 35 points form the surface S known as the Klein quadric. For each of the 28 points off S there are 6 lines through it which do not intersect S. [25] :67

As there are seven days in a week, the heptad is an important part of the solution:

When two points as A and B of the line ABC are chosen, each of the five other lines through A is met by only one of the five other lines through B. The five points determined by the intersections of these pairs of lines, together with the two points A and B we designate a "heptad". [25] :68

A heptad is determined by any two of its points. Each of the 28 points off S lies in two heptads. There are 8 heptads. The projective linear group PGL(3,2) is isomorphic the alternating group on the 8 heptads. [25] :69

The schoolgirl problem consists in finding seven lines in the 5-space which do not intersect and such that any two lines always have a heptad in common. [25] :74

Spreads and packing

In PG(3,2), a partition of the points into lines is called a spread, and a partition of the lines into spreads is called a packing or parallelism. [26] :66 There are 56 spreads and 240 packings. When Hirschfeld considered the problem in his Finite Projective Spaces of Three Dimensions (1985), he noted that some solutions correspond to packings of PG(3,2), essentially as described by Conwell above, [26] :91 and he presented two of them. [26] :75

Generalization

The problem can be generalized to girls, where must be an odd multiple of 3 (that is ), walking in triplets for days, with the requirement, again, that no pair of girls walk in the same row twice. The solution to this generalisation is a Steiner triple system, an S(2, 3, 6t + 3) with parallelism (that is, one in which each of the 6t + 3 elements occurs exactly once in each block of 3-element sets), known as a Kirkman triple system. [27] It is this generalization of the problem that Kirkman discussed first, while the famous special case was only proposed later. [28] A complete solution to the general case was published by D. K. Ray-Chaudhuri and R. M. Wilson in 1968, [29] though it had already been solved by Lu Jiaxi (Chinese :陆家羲) in 1965, [30] but had not been published at that time. [31]

Many variations of the basic problem can be considered. Alan Hartman solves a problem of this type with the requirement that no trio walks in a row of four more than once [32] using Steiner quadruple systems.

More recently a similar problem known as the Social Golfer Problem has gained interest that deals with 32 golfers who want to get to play with different people each day in groups of 4, over the course of 10 days.

As this is a regrouping strategy where all groups are orthogonal, this process within the problem of organising a large group into smaller groups where no two people share the same group twice can be referred to as orthogonal regrouping. [33]

The Resolvable Coverings problem considers the general girls, groups case where each pair of girls must be in the same group at some point, but we want to use as few days as possible. This can, for example, be used to schedule a rotating table plan, in which each pair of guests must at some point be at the same table. [34]

The Oberwolfach problem, of decomposing a complete graph into edge-disjoint copies of a given 2-regular graph, also generalizes Kirkman's schoolgirl problem. Kirkman's problem is the special case of the Oberwolfach problem in which the 2-regular graph consists of five disjoint triangles. [35]

See also

Notes

  1. Graham, Grötschel & Lovász 1995
  2. Weisstein, Eric W. "Kirkman's Schoolgirl Problem". MathWorld .
  3. 1 2 Cole 1922
  4. 1 2 3 4 5 6 The Early History of Block Designs by Robin Wilson, Dept of Pure Mathematics, The Open University, UK
  5. Cummings 1918
  6. Cummings 1918
  7. Kirkman 1850
  8. Cayley 1850
  9. Cummings 1918
  10. Lucas 1883
  11. Rouse Ball 1892
  12. Ahrens 1901
  13. Dudeney 1917
  14. Cummings 1918
  15. Cummings 1918
  16. Cole, F. N.; Cummings, Louise D.; White, H. S. (1917). "The Complete Enumeration of Triad Systems in 15 Elements". Proceedings of the National Academy of Sciences. 3 (3): 197–199. Bibcode:1917PNAS....3..197C. doi: 10.1073/pnas.3.3.197 . PMC   1091209 . PMID   16576216.
  17. Lu 1990
  18. Colbourn & Dinitz 2007 , p. 13
  19. Ray-Chaudhuri & Wilson 1971
  20. 1 2 3 4 5 Denniston, R.H.F. (1974). "Sylvester's problem of the 15 schoolgirls". Discrete Mathematics. 9 (3): 229–233. doi: 10.1016/0012-365X(74)90004-1 .
  21. Kirkman's Ladies audio
  22. Johnson, Tom; Jedrzejewski, Franck (2014). "Kirkman's Ladies, A Combinatorial Design". Looking at Numbers. pp. 37–55. doi:10.1007/978-3-0348-0554-4_4. ISBN   978-3-0348-0553-7.
  23. Zhou, Junling; Chang, Yanxun (2014). "A new result on Sylvester's problem". Discrete Mathematics. 331: 15–19. doi:10.1016/j.disc.2014.04.022.
  24. Araya, Makoto & Harada, Masaaki. (2010). Mutually Disjoint Steiner Systems S(5, 8, 24) and 5-(24, 12, 48) Designs. Electr. J. Comb.. 17.
  25. 1 2 3 4 5 Conwell, George M. (1910). "The 3-space PG(3,2) and its Group". Annals of Mathematics . 11 (2): 60–76. doi:10.2307/1967582. JSTOR   1967582.
  26. 1 2 3 Hirschfeld, J.W.P. (1985), Finite Projective Spaces of Three Dimensions, Oxford University Press, ISBN   0-19-853536-8
  27. Ball & Coxeter 1987 , pp. 287−289
  28. Kirkman 1847
  29. Ray-Chaudhuri & Wilson 1971
  30. Lu 1990
  31. Colbourn & Dinitz 2007 , p. 13
  32. Hartman 1980
  33. Banchero, Matías; Robledo, Franco; Romero, Pablo; Sartor, Pablo; Servetti, Camilo (2021). "Max-Diversity Orthogonal Regrouping of MBA Students Using a GRASP/VND Heuristic". Variable Neighborhood Search. Lecture Notes in Computer Science. Vol. 12559. pp. 58–70. doi:10.1007/978-3-030-69625-2_5. ISBN   978-3-030-69624-5. S2CID   232314621.
  34. Van Dam, Edwin R.; Haemers, Willem H.; Peek, Maurice B. M. (2003). "Equitable resolvable coverings". Journal of Combinatorial Designs. 11 (2): 113–123. doi: 10.1002/jcd.10024 . S2CID   120596961.
  35. Bryant & Danziger 2011
  36. McRobbie, Linda Rodriguez. "The Mind-Bending Math Behind Spot It!, the Beloved Family Card Game". Smithsonian Magazine. Retrieved 2020-03-01.

Related Research Articles

<span class="mw-page-title-main">Regular icosahedron</span> Polyhedron with 20 regular triangular faces

In geometry, a regular icosahedron is a convex polyhedron with 20 faces, 30 edges and 12 vertices. It is one of the five Platonic solids, and the one with the most faces.

<span class="mw-page-title-main">Steiner system</span> Block design in combinatorial mathematics

In combinatorial mathematics, a Steiner system is a type of block design, specifically a t-design with λ = 1 and t = 2 or (recently) t ≥ 2.

<span class="mw-page-title-main">Symmetric group</span> Type of group in abstract algebra

In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group defined over a finite set of symbols consists of the permutations that can be performed on the symbols. Since there are such permutation operations, the order of the symmetric group is .

<span class="mw-page-title-main">Permutation</span> Mathematical version of an order change

In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or process of changing the linear order of an ordered set.

<span class="mw-page-title-main">Galois theory</span> Mathematical connection between field theory and group theory

In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to group theory, which makes them simpler and easier to understand.

<span class="mw-page-title-main">Finite geometry</span> Geometric system with a finite number of points

A finite geometry is any geometric system that has only a finite number of points. The familiar Euclidean geometry is not finite, because a Euclidean line contains infinitely many points. A geometry based on the graphics displayed on a computer screen, where the pixels are considered to be the points, would be a finite geometry. While there are many systems that could be called finite geometries, attention is mostly paid to the finite projective and affine spaces because of their regularity and simplicity. Other significant types of finite geometry are finite Möbius or inversive planes and Laguerre planes, which are examples of a general type called Benz planes, and their higher-dimensional analogs such as higher finite inversive geometries.

<span class="mw-page-title-main">Fano plane</span> Geometry with 7 points and 7 lines

In finite geometry, the Fano plane is a finite projective plane with the smallest possible number of points and lines: 7 points and 7 lines, with 3 points on every line and 3 lines through every point. These points and lines cannot exist with this pattern of incidences in Euclidean geometry, but they can be given coordinates using the finite field with two elements. The standard notation for this plane, as a member of a family of projective spaces, is PG(2, 2). Here PG stands for "projective geometry", the first parameter is the geometric dimension and the second parameter is the order.

<span class="mw-page-title-main">Pancake sorting</span> Mathematics problem

Pancake sorting is the mathematical problem of sorting a disordered stack of pancakes in order of size when a spatula can be inserted at any point in the stack and used to flip all pancakes above it. A pancake number is the minimum number of flips required for a given number of pancakes. In this form, the problem was first discussed by American geometer Jacob E. Goodman. A variant of the problem is concerned with burnt pancakes, where each pancake has a burnt side and all pancakes must, in addition, end up with the burnt side on bottom.

In mathematics, a q-analog of a theorem, identity or expression is a generalization involving a new parameter q that returns the original theorem, identity or expression in the limit as q → 1. Typically, mathematicians are interested in q-analogs that arise naturally, rather than in arbitrarily contriving q-analogs of known results. The earliest q-analog studied in detail is the basic hypergeometric series, which was introduced in the 19th century.

Combinatorial design theory is the part of combinatorial mathematics that deals with the existence, construction and properties of systems of finite sets whose arrangements satisfy generalized concepts of balance and/or symmetry. These concepts are not made precise so that a wide range of objects can be thought of as being under the same umbrella. At times this might involve the numerical sizes of set intersections as in block designs, while at other times it could involve the spatial arrangement of entries in an array as in sudoku grids.

<span class="mw-page-title-main">Hoffman–Singleton graph</span> 7-regular undirected graph with 50 nodes and 175 edges

In the mathematical field of graph theory, the Hoffman–Singleton graph is a 7-regular undirected graph with 50 vertices and 175 edges. It is the unique strongly regular graph with parameters (50,7,0,1). It was constructed by Alan Hoffman and Robert Singleton while trying to classify all Moore graphs, and is the highest-order Moore graph known to exist. Since it is a Moore graph where each vertex has degree 7, and the girth is 5, it is a (7,5)-cage.

<span class="mw-page-title-main">Thomas Kirkman</span> British church minister and mathematician (1806–1895)

Thomas Penyngton Kirkman FRS was a British mathematician and ordained minister of the Church of England. Despite being primarily a churchman, he maintained an active interest in research-level mathematics, and was listed by Alexander Macfarlane as one of ten leading 19th-century British mathematicians. In the 1840s, he obtained an existence theorem for Steiner triple systems that founded the field of combinatorial design theory, while the related Kirkman's schoolgirl problem is named after him.

<span class="mw-page-title-main">Galois geometry</span>

Galois geometry is the branch of finite geometry that is concerned with algebraic and analytic geometry over a finite field. More narrowly, a Galois geometry may be defined as a projective space over a finite field.

<span class="mw-page-title-main">100 prisoners problem</span> Mathematics problem

The 100 prisoners problem is a mathematical problem in probability theory and combinatorics. In this problem, 100 numbered prisoners must find their own numbers in one of 100 drawers in order to survive. The rules state that each prisoner may open only 50 drawers and cannot communicate with other prisoners. At first glance, the situation appears hopeless, but a clever strategy offers the prisoners a realistic chance of survival.

<span class="mw-page-title-main">Pancake graph</span>

In the mathematical field of graph theory, the pancake graphPn or n-pancake graph is a graph whose vertices are the permutations of n symbols from 1 to n and its edges are given between permutations transitive by prefix reversals.

<span class="mw-page-title-main">Oberwolfach problem</span>

The Oberwolfach problem is an unsolved problem in mathematics that may be formulated either as a problem of scheduling seating assignments for diners, or more abstractly as a problem in graph theory, on the edge cycle covers of complete graphs. It is named after the Oberwolfach Research Institute for Mathematics, where the problem was posed in 1967 by Gerhard Ringel. It is known to be true for all sufficiently-large complete graphs.

Lu Jiaxi was a self-taught Chinese mathematician who made important contributions in combinatorial design theory. He was a high school physics teacher in a remote city and worked in his spare time on the problem of large sets of disjoint Steiner triple systems.

<span class="mw-page-title-main">PG(3,2)</span> Smallest 3D projective space

In finite geometry, PG(3,2) is the smallest three-dimensional projective space. It can be thought of as an extension of the Fano plane. It has 15 points, 35 lines, and 15 planes. It also has the following properties:

<span class="mw-page-title-main">Tripod packing</span>

In combinatorics, tripod packing is a problem of finding many disjoint tripods in a three-dimensional grid, where a tripod is an infinite polycube, the union of the grid cubes along three positive axis-aligned rays with a shared apex.

In discrete mathematics, the social golfer problem (SGP) is a combinatorial-design problem derived from a question posted in the usenet newsgroup sci.op-research in May 1998. The problem is as follows: 32 golfers play golf once a week in groups of 4. Schedule these golfers to play for as many weeks as possible without any two golfers playing together in a group more than once.

References