List of things named after Friedrich Bessel

Last updated

This is a (partial) list of things named for Friedrich Wilhelm Bessel, a 19th-century German scholar who worked in astronomy, geodesy and mathematical sciences:

Contents

Astronomy, geodesy, astronomical bodies

Mathematics

Related Research Articles

Bessel function Families of solutions to related differential equations

Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation

Fourier analysis Branch of mathematics

In mathematics, Fourier analysis is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer.

Analytic function Function locally given by a convergent power series

In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions. A function is analytic if and only if its Taylor series about x0 converges to the function in some neighborhood for every x0 in its domain.

In mathematics, the Hankel transform expresses any given function f(r) as the weighted sum of an infinite number of Bessel functions of the first kind Jν(kr). The Bessel functions in the sum are all of the same order ν, but differ in a scaling factor k along the r axis. The necessary coefficient Fν of each Bessel function in the sum, as a function of the scaling factor k constitutes the transformed function. The Hankel transform is an integral transform and was first developed by the mathematician Hermann Hankel. It is also known as the Fourier–Bessel transform. Just as the Fourier transform for an infinite interval is related to the Fourier series over a finite interval, so the Hankel transform over an infinite interval is related to the Fourier–Bessel series over a finite interval.

Bessel may refer to:

Series expansion

In mathematics, a series expansion is an expansion of a function into a series, or infinite sum. It is a method for calculating a function that cannot be expressed by just elementary operators.

In mathematics, the Riesz–Fischer theorem in real analysis is any of a number of closely related results concerning the properties of the space L2 of square integrable functions. The theorem was proven independently in 1907 by Frigyes Riesz and Ernst Sigismund Fischer.

In electronics and signal processing, a Bessel filter is a type of analog linear filter with a maximally flat group/phase delay, which preserves the wave shape of filtered signals in the passband. Bessel filters are often used in audio crossover systems.

In mathematics, Fourier–Bessel series is a particular kind of generalized Fourier series based on Bessel functions.

In mathematics, the Bessel polynomials are an orthogonal sequence of polynomials. There are a number of different but closely related definitions. The definition favored by mathematicians is given by the series

Network synthesis filters are signal processing filters designed by the network synthesis method. The method has produced several important classes of filter including the Butterworth filter, the Chebyshev filter and the Elliptic filter. It was originally intended to be applied to the design of passive linear analogue filters but its results can also be applied to implementations in active filters and digital filters. The essence of the method is to obtain the component values of the filter from a given rational function representing the desired transfer function.

In mathematics, the Neumann polynomials, introduced by Carl Neumann for the special case , are a sequence of polynomials in used to expand functions in term of Bessel functions.

In mathematics, the Bessel potential is a potential similar to the Riesz potential but with better decay properties at infinity.

In mathematics, the Hahn–Exton q-Bessel function or the third Jackson q-Bessel function is a q-analog of the Bessel function, and satisfies the Hahn-Exton q-difference equation. This function was introduced by Hahn (1953) in a special case and by Exton (1983) in general.