M/D/1 queue

Last updated

In queueing theory, a discipline within the mathematical theory of probability, an M/D/1 queue represents the queue length in a system having a single server, where arrivals are determined by a Poisson process and job service times are fixed (deterministic). The model name is written in Kendall's notation. [1] Agner Krarup Erlang first published on this model in 1909, starting the subject of queueing theory. [2] [3] An extension of this model with more than one server is the M/D/c queue.

Contents

Model definition

An M/D/1 queue is a stochastic process whose state space is the set {0,1,2,3,...} where the value corresponds to the number of entities in the system, including any currently in service.


Transition Matrix

The transition probability matrix for an M/D/1 queue with arrival rate λ and service time 1, such that λ <1 (for stability of the queue) is given by P as below: [4]

, n = 0,1,....

Classic performance metrics

The following expressions present the classic performance metrics of a single server queuing system such as M/D/1, with:

The average number of entities in the system, L is given by:

The average number of entities in the queue (line), LQ is given by:

The average waiting time in the system, ω is given by:

The average waiting time in the queue (line), ω Q is given by:

Example

Considering a system that has only one server, with an arrival rate of 20 entities per hour and the service rate is at a constant of 30 per hour.

So the utilization of the server is: ρ=20/30=2/3. Using the metrics shown above, the results are as following: 1) Average number in line LQ= 0.6667; 2) Average number in system L =1.333; 3) Average time in line ωQ = 0.033 hour; 4) Average time in system ω = 0.067 hour.

Relations for Mean Waiting Time in M/M/1 and M/D/1 queues

For an equilibrium M/G/1 queue, the expected value of the time W spent by a customer in the queue are given by Pollaczek-Khintchine formula as below: [5]

where τ is the mean service time; σ2 is the variance of service time; and ρ=λτ < 1, λ being the arrival rate of the customers.

For M/M/1 queue, the service times are exponentially distributed, then σ2 = τ2 and the mean waiting time in the queue denoted by WM is given by the following equation: [5]

Using this, the corresponding equation for M/D/1 queue can be derived, assuming constant service times. Then the variance of service time becomes zero, i.e. σ2 = 0. The mean waiting time in the M/D/1 queue denoted as WD is given by the following equation: [5]

From the two equations above, we can infer that Mean queue length in M/M/1 queue is twice that in M/D/1 queue.

Stationary distribution

The number of jobs in the queue can be written as M/G/1 type Markov chain and the stationary distribution found for state i (written πi) in the case D = 1 to be [4]

Delay

Define ρ = λ/μ as the utilization; then the mean delay in the system in M/D/1 queue is [6]

and in the queue:

Busy period

The busy period is the time period measured from the instant a first customer arrives at an empty queue to the time when the queue is again empty. This time period is equal to D times the number of customers served. If ρ < 1, then the number of customers served during a busy period of the queue has a Borel distribution with parameter ρ. [7] [8]

Finite capacity

Stationary distribution

A stationary distribution for the number of customers in the queue and mean queue length can be computed using probability generating functions. [9]

Transient solution

The transient solution of an M/D/1 queue of finite capacity N, often written M/D/1/N, was published by Garcia et al. in 2002. [10]

Application

Includes applications in wide area network design, [11] where a single central processor to read the headers of the packets arriving in exponential fashion, then computes the next adapter to which each packet should go and dispatch the packets accordingly. Here the service time is the processing of the packet header and cyclic redundancy check, which are independent of the length of each arriving packets. Hence, it can be modeled as a M/D/1 queue. [12]

Related Research Articles

<span class="mw-page-title-main">Queueing theory</span> Mathematical study of waiting lines, or queues

Queueing theory is the mathematical study of waiting lines, or queues. A queueing model is constructed so that queue lengths and waiting time can be predicted. Queueing theory is generally considered a branch of operations research because the results are often used when making business decisions about the resources needed to provide a service.

In physics, a partition function describes the statistical properties of a system in thermodynamic equilibrium. Partition functions are functions of the thermodynamic state variables, such as the temperature and volume. Most of the aggregate thermodynamic variables of the system, such as the total energy, free energy, entropy, and pressure, can be expressed in terms of the partition function or its derivatives. The partition function is dimensionless.

Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning. They are typically used in complex statistical models consisting of observed variables as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as might be described by a graphical model. As typical in Bayesian inference, the parameters and latent variables are grouped together as "unobserved variables". Variational Bayesian methods are primarily used for two purposes:

  1. To provide an analytical approximation to the posterior probability of the unobserved variables, in order to do statistical inference over these variables.
  2. To derive a lower bound for the marginal likelihood of the observed data. This is typically used for performing model selection, the general idea being that a higher marginal likelihood for a given model indicates a better fit of the data by that model and hence a greater probability that the model in question was the one that generated the data.

The birth–death process is a special case of continuous-time Markov process where the state transitions are of only two types: "births", which increase the state variable by one and "deaths", which decrease the state by one. It was introduced by William Feller. The model's name comes from a common application, the use of such models to represent the current size of a population where the transitions are literal births and deaths. Birth–death processes have many applications in demography, queueing theory, performance engineering, epidemiology, biology and other areas. They may be used, for example, to study the evolution of bacteria, the number of people with a disease within a population, or the number of customers in line at the supermarket.

In queueing theory, a discipline within the mathematical theory of probability, a Jackson network is a class of queueing network where the equilibrium distribution is particularly simple to compute as the network has a product-form solution. It was the first significant development in the theory of networks of queues, and generalising and applying the ideas of the theorem to search for similar product-form solutions in other networks has been the subject of much research, including ideas used in the development of the Internet. The networks were first identified by James R. Jackson and his paper was re-printed in the journal Management Science’s ‘Ten Most Influential Titles of Management Sciences First Fifty Years.’

In queueing theory, a discipline within the mathematical theory of probability, a G-network is an open network of G-queues first introduced by Erol Gelenbe as a model for queueing systems with specific control functions, such as traffic re-routing or traffic destruction, as well as a model for neural networks. A G-queue is a network of queues with several types of novel and useful customers:

In queueing theory, a discipline within the mathematical theory of probability, the Pollaczek–Khinchine formula states a relationship between the queue length and service time distribution Laplace transforms for an M/G/1 queue. The term is also used to refer to the relationships between the mean queue length and mean waiting/service time in such a model.

<span class="mw-page-title-main">M/M/1 queue</span> Queue with Markov (Poisson) arrival process, exponential service time distribution and one server

In queueing theory, a discipline within the mathematical theory of probability, an M/M/1 queue represents the queue length in a system having a single server, where arrivals are determined by a Poisson process and job service times have an exponential distribution. The model name is written in Kendall's notation. The model is the most elementary of queueing models and an attractive object of study as closed-form expressions can be obtained for many metrics of interest in this model. An extension of this model with more than one server is the M/M/c queue.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

In queueing theory, a discipline within the mathematical theory of probability, Kingman's formula also known as the VUT equation, is an approximation for the mean waiting time in a G/G/1 queue. The formula is the product of three terms which depend on utilization (U), variability (V) and service time (T). It was first published by John Kingman in his 1961 paper The single server queue in heavy traffic. It is known to be generally very accurate, especially for a system operating close to saturation.

In queueing theory, a discipline within the mathematical theory of probability, the M/M/c queue is a multi-server queueing model. In Kendall's notation it describes a system where arrivals form a single queue and are governed by a Poisson process, there are c servers, and job service times are exponentially distributed. It is a generalisation of the M/M/1 queue which considers only a single server. The model with infinitely many servers is the M/M/∞ queue.

In mathematical physics, the Belinfante–Rosenfeld tensor is a modification of the energy–momentum tensor that is constructed from the canonical energy–momentum tensor and the spin current so as to be symmetric yet still conserved.

In queueing theory, a discipline within the mathematical theory of probability, an M/G/1 queue is a queue model where arrivals are Markovian, service times have a General distribution and there is a single server. The model name is written in Kendall's notation, and is an extension of the M/M/1 queue, where service times must be exponentially distributed. The classic application of the M/G/1 queue is to model performance of a fixed head hard disk.

In queueing theory, a discipline within the mathematical theory of probability, the M/M/∞ queue is a multi-server queueing model where every arrival experiences immediate service and does not wait. In Kendall's notation it describes a system where arrivals are governed by a Poisson process, there are infinitely many servers, so jobs do not need to wait for a server. Each job has an exponentially distributed service time. It is a limit of the M/M/c queue model where the number of servers c becomes very large.

In queueing theory, a discipline within the mathematical theory of probability, a heavy traffic approximation is the matching of a queueing model with a diffusion process under some limiting conditions on the model's parameters. The first such result was published by John Kingman who showed that when the utilisation parameter of an M/M/1 queue is near 1 a scaled version of the queue length process can be accurately approximated by a reflected Brownian motion.

In probability theory and statistics, the generalized multivariate log-gamma (G-MVLG) distribution is a multivariate distribution introduced by Demirhan and Hamurkaroglu in 2011. The G-MVLG is a flexible distribution. Skewness and kurtosis are well controlled by the parameters of the distribution. This enables one to control dispersion of the distribution. Because of this property, the distribution is effectively used as a joint prior distribution in Bayesian analysis, especially when the likelihood is not from the location-scale family of distributions such as normal distribution.

In queueing theory, a discipline within the mathematical theory of probability, an M/D/c queue represents the queue length in a system having c servers, where arrivals are determined by a Poisson process and job service times are fixed (deterministic). The model name is written in Kendall's notation. Agner Krarup Erlang first published on this model in 1909, starting the subject of queueing theory. The model is an extension of the M/D/1 queue which has only a single server.

In queueing theory, a discipline within the mathematical theory of probability, the G/M/1 queue represents the queue length in a system where interarrival times have a general distribution and service times for each job have an exponential distribution. The system is described in Kendall's notation where the G denotes a general distribution, M the exponential distribution for service times and the 1 that the model has a single server.

In physics, specifically general relativity, the Mathisson–Papapetrou–Dixon equations describe the motion of a massive spinning body moving in a gravitational field. Other equations with similar names and mathematical forms are the Mathisson–Papapetrou equations and Papapetrou–Dixon equations. All three sets of equations describe the same physics.

<span class="mw-page-title-main">Queuing Rule of Thumb</span> Mathematical formula for queueing

The Queuing Rule of Thumb (QROT) is a mathematical formula, known as the queuing constraint equation when it is used to find an approximation of servers required to service a queue. The formula is written as an inequality relating the number of servers (s), total number of service requestors (N), service time (r), and the maximum time to empty the queue (T):

References

  1. Kendall, D. G. (1953). "Stochastic Processes Occurring in the Theory of Queues and their Analysis by the Method of the Imbedded Markov Chain". The Annals of Mathematical Statistics. 24 (3): 338. doi: 10.1214/aoms/1177728975 . JSTOR   2236285.
  2. Kingman, J. F. C. (2009). "The first Erlang century—and the next". Queueing Systems . 63: 3–4. doi:10.1007/s11134-009-9147-4.
  3. Erlang, A. K. (1909). "The theory of probabilities and telephone conversations" (PDF). Nyt Tidsskrift for Matematik B. 20: 33–39. Archived from the original (PDF) on October 1, 2011.
  4. 1 2 Nakagawa, Kenji (2005). "On the Series Expansion for the Stationary Probabilities of an M/D/1 queue" (PDF). Journal of the Operations Research Society of Japan. 48 (2): 111–122. doi: 10.15807/jorsj.48.111 .
  5. 1 2 3 Cooper, Robert B. (1981). Introduction to Queuing Theory. Elsevier Science Publishing Co. p. 189. ISBN   0-444-00379-7.
  6. Cahn, Robert S. (1998). Wide Area Network Design:Concepts and Tools for Optimization. Morgan Kaufmann. p. 319. ISBN   1558604588.
  7. Tanner, J. C. (1961). "A derivation of the Borel distribution". Biometrika . 48: 222–224. doi:10.1093/biomet/48.1-2.222. JSTOR   2333154.
  8. Haight, F. A.; Breuer, M. A. (1960). "The Borel-Tanner distribution". Biometrika . 47: 143. doi:10.1093/biomet/47.1-2.143. JSTOR   2332966.
  9. Brun, Olivier; Garcia, Jean-Marie (2000). "Analytical Solution of Finite Capacity M/D/1 Queues". Journal of Applied Probability. Applied Probability Trust. 37 (4): 1092–1098. doi:10.1239/jap/1014843086. JSTOR   3215497.
  10. Garcia, Jean-Marie; Brun, Olivier; Gauchard, David (2002). "Transient Analytical Solution of M/D/1/N Queues". Journal of Applied Probability. Applied Probability Trust. 39 (4): 853–864. doi:10.1239/jap/1037816024. JSTOR   3216008.
  11. Kotobi, Khashayar; Bilén, Sven G. (2017). "Spectrum sharing via hybrid cognitive players evaluated by an M/D/1 queuing model". EURASIP Journal on Wireless Communications and Networking. 2017: 85. doi: 10.1186/s13638-017-0871-x . Retrieved 2017-05-05.
  12. Chan, Robert S. (1998). Wide Area Network Design: Concepts and Tools for optimization. Morgan Kaufmann Publishers Inc. p. 319. ISBN   1-55860-458-8.