Parts stress modelling

Last updated

Parts stress modelling is a method in engineering and especially electronics to find an expected value for the rate of failure of the mechanical and electronic components of a system. It is based upon the idea that the more components that there are in the system, and the greater stress that they undergo in operation, the more often they will fail.

Engineering applied science

Engineering is the application of knowledge in the form of science, mathematics, and empirical evidence, to the innovation, design, construction, operation and maintenance of structures, machines, materials, software, devices, systems, processes, and organizations. The discipline of engineering encompasses a broad range of more specialized fields of engineering, each with a more specific emphasis on particular areas of applied mathematics, applied science, and types of application. See glossary of engineering.

Electronics physics, engineering, technology and applications that deal with the emission, flow and control of electrons in vacuum and matter

Electronics comprises the physics, engineering, technology and applications that deal with the emission, flow and control of electrons in vacuum and matter. The identification of the electron in 1897, along with the invention of the vacuum tube, which could amplify and rectify small electrical signals, inaugurated the field of electronics and the electron age.

Failure state or condition of not meeting a desirable or intended objective

Failure is the state or condition of not meeting a desirable or intended objective, and may be viewed as the opposite of success. Product failure ranges from failure to sell the product to fracture of the product, in the worst cases leading to personal injury, the province of forensic engineering.

Parts count modelling is a simpler variant of the method, with component stress not taken into account.

Various organisations have published standards specifying how parts stress modelling should be carried out. Some from electronics are:

These "standards" produce different results, often by a factor of more than two, for the same modelled system. The differences illustrate the fact that this modelling is not an exact science. System designers often have to do the modelling using a standard specified by a customer, so that the customer can compare the results with other systems modelled in the same way.

All of these standards compute an expected overall failure rate for all the components in the system, which is not necessarily the rate at which the system as a whole fails. Systems often incorporate redundancy or fault tolerance so that they do not fail when an individual component fails.

Redundancy (engineering) Duplication of critical components to increase reliability of a system

In engineering, redundancy is the duplication of critical components or functions of a system with the intention of increasing reliability of the system, usually in the form of a backup or fail-safe, or to improve actual system performance, such as in the case of GNSS receivers, or multi-threaded computer processing.

Fault tolerance is the property that enables a system to continue operating properly in the event of the failure of some of its components. If its operating quality decreases at all, the decrease is proportional to the severity of the failure, as compared to a naively designed system in which even a small failure can cause total breakdown. Fault tolerance is particularly sought after in high-availability or life-critical systems. The ability of maintaining functionality when portions of a system break down is referred to as graceful degradation.

Several companies provide programs for performing parts stress modelling calculations. It's also possible to do the modelling with a spreadsheet.

A spreadsheet is an interactive computer application for organization, analysis and storage of data in tabular form. Spreadsheets developed as computerized analogs of paper accounting worksheets. The program operates on data entered in cells of a table. Each cell may contain either numeric or text data, or the results of formulas that automatically calculate and display a value based on the contents of other cells. A spreadsheet may also refer to one such electronic document.

All these models implicitly assume the idea of "random failure". Individual components fail at random times but at a predictable rate, analogous to the process of nuclear decay. One justification for this idea is that components fail by a process of wearout, a predictable decay after manufacture, but that the wearout life of individual components is scattered widely about some very long mean. The observed "random" failures are then just the extreme outliers at the early edge of this distribution. However, this may not be the whole picture.

All the models use basically the same process, with detailed variations.

An operating temperature is the temperature at which an electrical or mechanical device operates. The device will operate effectively within a specified temperature range which varies based on the device function and application context, and ranges from the minimum operating temperature to the maximum operating temperature. Outside this range of safe operating temperatures the device may fail. Aerospace and military-grade devices generally operate over a broader temperature range than industrial devices; commercial-grade devices generally have the narrowest operating temperature range.

Other global modification parameters can be employed, which are assumed to have the same effect on every component failure rate. The most usual are the environment, such as ground benign or airborne, commercial, and the purchasing quality assurance process. The standards specify overall multiplier factors for these various choices.

Related Research Articles

Resistor Passive electrical component providing electrical resistance

A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active elements, and terminate transmission lines, among other uses. High-power resistors that can dissipate many watts of electrical power as heat, may be used as part of motor controls, in power distribution systems, or as test loads for generators. Fixed resistors have resistances that only change slightly with temperature, time or operating voltage. Variable resistors can be used to adjust circuit elements, or as sensing devices for heat, light, humidity, force, or chemical activity.

Safety engineering engineering discipline which assures that engineered systems provide acceptable levels of safety

Safety engineering is an engineering discipline which assures that engineered systems provide acceptable levels of safety. It is strongly related to industrial engineering/systems engineering, and the subset system safety engineering. Safety engineering assures that a life-critical system behaves as needed, even when components fail.

Mean time between failures (MTBF) is the predicted elapsed time between inherent failures of a mechanical or electronic system, during normal system operation. MTBF can be calculated as the arithmetic mean (average) time between failures of a system. The term is used for repairable systems, while mean time to failure (MTTF) denotes the expected time to failure for a non-repairable system.

Electrolytic capacitor polarized capacitor whose anode is made of a metal that forms an insulating oxide layer through anodization, acting as the dielectric of the capacitor; a solid, liquid, or gel electrolyte covers the surface of this oxide layer, serving as the cathode

An electrolytic capacitor is a polarized capacitor whose anode or positive plate is made of a metal that forms an insulating oxide layer through anodization. This oxide layer acts as the dielectric of the capacitor. A solid, liquid, or gel electrolyte covers the surface of this oxide layer, serving as the (cathode) or negative plate of the capacitor. Due to their very thin dielectric oxide layer and enlarged anode surface, electrolytic capacitors have a much higher capacitance-voltage (CV) product per unit volume than ceramic capacitors or film capacitors, and so can have large capacitance values. There are three families of electrolytic capacitor: aluminum electrolytic capacitors, tantalum electrolytic capacitors, and niobium electrolytic capacitors.

Burn-in is the process by which components of a system are exercised prior to being placed in service. This testing process will force certain failures to occur under supervised conditions so an understanding of load capacity of the product can be established.

Failure rate is the frequency with which an engineered system or component fails, expressed in failures per unit of time. It is often denoted by the Greek letter λ (lambda) and is highly used in reliability engineering.

Reliability engineering is a sub-discipline of systems engineering that emphasizes dependability in the lifecycle management of a product. Dependability, or reliability, describes the ability of a system or component to function under stated conditions for a specified period of time. Reliability is closely related to availability, which is typically described as the ability of a component or system to function at a specified moment or interval of time.

Environmental stress screening (ESS) refers to the process of exposing a newly manufactured or repaired product or component to stresses such as thermal cycling and vibration in order to force latent defects to manifest themselves by permanent or catastrophic failure during the screening process. The surviving population, upon completion of screening, can be assumed to have a higher reliability than a similar unscreened population.

The Weibull modulus is a dimensionless parameter of the Weibull distribution which is used to describe variability in measured material strength of brittle materials.

A highly accelerated life test (HALT), is a stress testing methodology for enhancing product reliability. HALT testing is currently in use by major manufacturing and research & development organizations to improve product reliability in a variety of industries, including electronics, computer, medical, and military.

Worst-case circuit analysis is a cost-effective means of screening a design to ensure with a high degree of confidence that potential defects and deficiencies are identified and eliminated prior to and during test, production, and delivery.

Reliability of semiconductor devices can be summarized as follows:

  1. Semiconductor devices are very sensitive to impurities and particles. Therefore, to manufacture these devices it is necessary to manage many processes while accurately controlling the level of impurities and particles. The finished product quality depends upon the many layered relationship of each interacting substance in the semiconductor, including metallization, chip material and package.
  2. The problems of micro-processes, and thin films and must be fully understood as they apply to metallization and wire bonding. It is also necessary to analyze surface phenomena from the aspect of thin films.
  3. Due to the rapid advances in technology, many new devices are developed using new materials and processes, and design calendar time is limited due to non-recurring engineering constraints, plus time to market concerns. Consequently, it is not possible to base new designs on the reliability of existing devices.
  4. To achieve economy of scale, semiconductor products are manufactured in high volume. Furthermore, repair of finished semiconductor products is impractical. Therefore, incorporation of reliability at the design stage and reduction of variation in the production stage have become essential.
  5. Reliability of semiconductor devices may depend on assembly, use, and environmental conditions. Stress factors affecting device reliability include gas, dust, contamination, voltage, current density, temperature, humidity, mechanical stress, vibration, shock, radiation, pressure, and intensity of magnetic and electrical fields.
Tantalum capacitor

A tantalum electrolytic capacitor is an electrolytic capacitor, a passive component of electronic circuits. It consists of a pellet of tantalum metal as an anode, covered by an insulating oxide layer that forms the dielectric, surrounded by liquid or solid electrolyte as a cathode. Because of its very thin and relatively high permittivity dielectric layer, the tantalum capacitor distinguishes itself from other conventional and electrolytic capacitors in having high capacitance per volume and lower weight.

Failure of electronic components Ways electronic elements fail and prevention measures

Electronic components have a wide range of failure modes. These can be classified in various ways, such as by time or cause. Failures can be caused by excess temperature, excess current or voltage, ionizing radiation, mechanical shock, stress or impact, and many other causes. In semiconductor devices, problems in the device package may cause failures due to contamination, mechanical stress of the device, or open or short circuits.

A prediction of reliability is an important element in the process of selecting equipment for use by telecommunications service providers and other buyers of electronic equipment, and it is essential during the design stage of engineering systems life cycle. Reliability is a measure of the frequency of equipment failures as a function of time. Reliability has a major impact on maintenance and repair costs and on the continuity of service.

The survival function is a function that gives the probability that a patient, device, or other object of interest will survive beyond any given specified time.

Sherlock Automated Design Analysis™ is a software tool developed by DfR Solutions for analyzing, grading, and certifying the expected reliability of products at the circuit card assembly level. The software is designed for use by design and reliability engineers and managers in the electronics industry. Because of the modularity and broad use of electronics, Sherlock has applicability across industries such as automotive, alternative energy, components, consumer electronics, contract manufacturing, data and telecommunications, industrial/power, medical, military/avionics/space, and portables.

RAMP Simulation Software for Modelling Reliability, Availability and Maintainability (RAM) is a computer software application developed by WS Atkins specifically for the assessment of the reliability, availability, maintainability and productivity characteristics of complex systems that would otherwise prove too difficult, cost too much or take too long to study analytically. The name RAMP is an acronym standing for Reliability, Availability and Maintainability of Process systems.

Robustness validation is a skills strategy with which the Robustness of a product to the loading conditions of a real application is proven and targeted statements about risks and reliability can be made. This strategy is particularly for use in the automotive industry however could be applied to any industry where high levels of reliability are required

Aluminum electrolytic capacitor

Aluminum electrolytic capacitors are polarized electrolytic capacitors whose anode electrode (+) is made of a pure aluminum foil with an etched surface. The aluminum forms a very thin insulating layer of aluminium oxide by anodization that acts as the dielectric of the capacitor. A non-solid electrolyte covers the rough surface of the oxide layer, serving in principle as the second electrode (cathode) (-) of the capacitor. A second aluminum foil called “cathode foil” contacts the electrolyte and serves as the electrical connection to the negative terminal of the capacitor.

References