Pasch's axiom

Last updated

In geometry, Pasch's axiom is a statement in plane geometry, used implicitly by Euclid, which cannot be derived from the postulates as Euclid gave them. Its essential role was discovered by Moritz Pasch in 1882. [1]

Contents

Statement

Two lines (in black) meeting a triangle side internally and meeting the other sides internally and externally Paschaxiom.svg
Two lines (in black) meeting a triangle side internally and meeting the other sides internally and externally

The axiom states that, [2]

Pasch's axiom  Let A, B, C be three points that do not lie on a line and let a be a line in the plane ABC which does not meet any of the points A, B, C. If the line a passes through a point of the segment AB, it also passes through a point of the segment AC, or through a point of segment BC.

The fact that segments AC and BC are not both intersected by the line a is proved in Supplement I,1, which was written by P. Bernays. [3]

A more modern version of this axiom is as follows: [4]

A more modern version of Pasch's axiom  In the plane, if a line intersects one side of a triangle internally then it intersects precisely one other side internally and the third side externally, if it does not pass through a vertex of the triangle.

(In case the third side is parallel to our line, we count an "intersection at infinity" as external.) A more informal version of the axiom is often seen:

A more informal version of Pasch's axiom  If a line, not passing through any vertex of a triangle, meets one side of the triangle then it meets another side.

History

Pasch published this axiom in 1882, [1] and showed that Euclid's axioms were incomplete. The axiom was part of Pasch's approach to introducing the concept of order into plane geometry.

Equivalences

In other treatments of elementary geometry, using different sets of axioms, Pasch's axiom can be proved as a theorem; [5] it is a consequence of the plane separation axiom when that is taken as one of the axioms. Hilbert uses Pasch's axiom in his axiomatic treatment of Euclidean geometry. [6] Given the remaining axioms in Hilbert's system, it can be shown that Pasch's axiom is logically equivalent to the plane separation axiom. [7]

Hilbert's use of Pasch's axiom

David Hilbert uses Pasch's axiom in his book Foundations of Geometry which provides an axiomatic basis for Euclidean geometry. Depending upon the edition, it is numbered either II.4 or II.5. [6] His statement is given above.

In Hilbert's treatment, this axiom appears in the section concerning axioms of order and is referred to as a plane axiom of order. Since he does not phrase the axiom in terms of the sides of a triangle (considered as lines rather than line segments) there is no need to talk about internal and external intersections of the line a with the sides of the triangle ABC.

Caveats

Pasch's axiom is distinct from Pasch's theorem which is a statement about the order of four points on a line. However, in literature there are many instances where Pasch's axiom is referred to as Pasch's theorem. A notable instance of this is Greenberg (1974 , p. 67).

Pasch's axiom should not be confused with the Veblen-Young axiom for projective geometry, [8] which may be stated as:

Veblen-Young axiom for projective geometry   If a line intersects two sides of a triangle, then it also intersects the third side.

There is no mention of internal and external intersections in the statement of the Veblen-Young axiom which is only concerned with the incidence property of the lines meeting. In projective geometry the concept of betweeness (required to define internal and external) is not valid and all lines meet (so the issue of parallel lines does not arise).

Notes

  1. 1 2 Pasch 1912 , p. 21
  2. This is taken from the Unger translation of the 10th edition of Hilbert's Foundations of Geometry and is numbered II.4.
  3. Hilbert 1999 , p. 200, the Unger translation.
  4. Beutelspacher & Rosenbaum 1998 , p. 7
  5. Wylie, Jr. 1964 , p. 100
  6. 1 2 axiom II.5 in Hilbert's Foundations of Geometry (Townsend translation referenced below), in the authorized English translation of the 10th edition translated by L. Unger (also published by Open Court) it is numbered II.4. There are several differences between these translations.
  7. only Hilbert's axioms I.1,2,3 and II.1,2,3 are needed for this. Proof is given in Faber (1983 , pp. 116–117).
  8. Beutelspacher & Rosenbaum 1998 , p. 6

Related Research Articles

<span class="mw-page-title-main">Euclidean geometry</span> Mathematical model of the physical space

Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated earlier, Euclid was the first to organize these propositions into a logical system in which each result is proved from axioms and previously proved theorems.

In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises by either replacing the parallel postulate with an alternative, or relaxing the metric requirement. In the former case, one obtains hyperbolic geometry and elliptic geometry, the traditional non-Euclidean geometries. When the metric requirement is relaxed, then there are affine planes associated with the planar algebras, which give rise to kinematic geometries that have also been called non-Euclidean geometry.

In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, projective space, and a selective set of basic geometric concepts. The basic intuitions are that projective space has more points than Euclidean space, for a given dimension, and that geometric transformations are permitted that transform the extra points to Euclidean points, and vice versa.

<span class="mw-page-title-main">Affine geometry</span> Euclidean geometry without distance and angles

In mathematics, affine geometry is what remains of Euclidean geometry when ignoring the metric notions of distance and angle.

<span class="mw-page-title-main">Finite geometry</span> Geometric system with a finite number of points

A finite geometry is any geometric system that has only a finite number of points. The familiar Euclidean geometry is not finite, because a Euclidean line contains infinitely many points. A geometry based on the graphics displayed on a computer screen, where the pixels are considered to be the points, would be a finite geometry. While there are many systems that could be called finite geometries, attention is mostly paid to the finite projective and affine spaces because of their regularity and simplicity. Other significant types of finite geometry are finite Möbius or inversive planes and Laguerre planes, which are examples of a general type called Benz planes, and their higher-dimensional analogs such as higher finite inversive geometries.

Synthetic geometry is geometry without the use of coordinates. It relies on the axiomatic method for proving all results from a few basic properties initially called postulate, and at present called axioms.

Absolute geometry is a geometry based on an axiom system for Euclidean geometry without the parallel postulate or any of its alternatives. Traditionally, this has meant using only the first four of Euclid's postulates. The term was introduced by János Bolyai in 1832. It is sometimes referred to as neutral geometry, as it is neutral with respect to the parallel postulate. The first four of Euclid's postulates are now considered insufficient as a basis of Euclidean geometry, so other systems are used instead.

Hilbert's axioms are a set of 20 assumptions proposed by David Hilbert in 1899 in his book Grundlagen der Geometrie as the foundation for a modern treatment of Euclidean geometry. Other well-known modern axiomatizations of Euclidean geometry are those of Alfred Tarski and of George Birkhoff.

<span class="mw-page-title-main">Line (geometry)</span> Straight figure with zero width and depth

In geometry, a straight line, usually abbreviated line, is an infinitely long object with no width, depth, or curvature, an idealization of such physical objects as a straightedge, a taut string, or a ray of light. Lines are spaces of dimension one, which may be embedded in spaces of dimension two, three, or higher. The word line may also refer, in everyday life, to a line segment, which is a part of a line delimited by two points.

In geometry, Pasch's theorem, stated in 1882 by the German mathematician Moritz Pasch, is a result in plane geometry which cannot be derived from Euclid's postulates.

In mathematics, Hilbert's fourth problem in the 1900 list of Hilbert's problems is a foundational question in geometry. In one statement derived from the original, it was to find — up to an isomorphism — all geometries that have an axiomatic system of the classical geometry, with those axioms of congruence that involve the concept of the angle dropped, and `triangle inequality', regarded as an axiom, added.

Tarski's axioms are an axiom system for Euclidean geometry, specifically for that portion of Euclidean geometry that is formulable in first-order logic with identity. As such, it does not require an underlying set theory. The only primitive objects of the system are "points" and the only primitive predicates are "betweenness" and "congruence". The system contains infinitely many axioms.

<span class="mw-page-title-main">Moritz Pasch</span>

Moritz Pasch was a German mathematician of Jewish ancestry specializing in the foundations of geometry. He completed his Ph.D. at the University of Breslau at only 22 years of age. He taught at the University of Giessen, where he is known to have supervised 30 doctorates.

<span class="mw-page-title-main">Sum of angles of a triangle</span> Fundamental result in geometry

In a Euclidean space, the sum of angles of a triangle equals the straight angle . A triangle has three angles, one at each vertex, bounded by a pair of adjacent sides.

Ordered geometry is a form of geometry featuring the concept of intermediacy but, like projective geometry, omitting the basic notion of measurement. Ordered geometry is a fundamental geometry forming a common framework for affine, Euclidean, absolute, and hyperbolic geometry.

The exterior angle theorem is Proposition 1.16 in Euclid's Elements, which states that the measure of an exterior angle of a triangle is greater than either of the measures of the remote interior angles. This is a fundamental result in absolute geometry because its proof does not depend upon the parallel postulate.

Foundations of geometry is the study of geometries as axiomatic systems. There are several sets of axioms which give rise to Euclidean geometry or to non-Euclidean geometries. These are fundamental to the study and of historical importance, but there are a great many modern geometries that are not Euclidean which can be studied from this viewpoint. The term axiomatic geometry can be applied to any geometry that is developed from an axiom system, but is often used to mean Euclidean geometry studied from this point of view. The completeness and independence of general axiomatic systems are important mathematical considerations, but there are also issues to do with the teaching of geometry which come into play.

<span class="mw-page-title-main">Crossbar theorem</span> Geometric theorem

In geometry, the crossbar theorem states that if ray AD is between ray AC and ray AB, then ray AD intersects line segment BC.

<span class="mw-page-title-main">Playfair's axiom</span> Modern formulation of Euclids parallel postulate

In geometry, Playfair's axiom is an axiom that can be used instead of the fifth postulate of Euclid :

In a plane, given a line and a point not on it, at most one line parallel to the given line can be drawn through the point.

In geometry, the point–line–plane postulate is a collection of assumptions (axioms) that can be used in a set of postulates for Euclidean geometry in two, three or more dimensions.

References