Philosophical interpretation of classical physics

Last updated

Classical Newtonian physics has, formally, been replaced by quantum mechanics on the small scale and relativity on the large scale. Because most humans continue to think in terms of the kind of events we perceive in the human scale of daily life, it became necessary to provide a new philosophical interpretation of classical physics. Classical mechanics worked extremely well within its domain of observation but made inaccurate predictions at very small scale – atomic scale systems – and when objects moved very fast or were very massive. Viewed through the lens of quantum mechanics or relativity, we can now see that classical physics, imported from the world of our everyday experience, includes notions for which there is no actual evidence. For example, one commonly held idea is that there exists one absolute time shared by all observers. Another is the idea that electrons are discrete entities like miniature planets that circle the nucleus in definite orbits .

Contents

The correspondence principle says that classical accounts are approximations to quantum mechanics that are for all practical purposes equivalent to quantum mechanics when dealing with macro-scale events.

In physics, the correspondence principle states that the behavior of systems described by the theory of quantum mechanics reproduces classical physics in the limit of large quantum numbers. In other words, it says that for large orbits and for large energies, quantum calculations must agree with classical calculations.

Various problems occur if classical mechanics is used to describe quantum systems, such as the ultraviolet catastrophe in black-body radiation, the Gibbs paradox, and the lack of a zero point for entropy.

Ultraviolet catastrophe disproven prediction in physics

The ultraviolet catastrophe, also called the Rayleigh–Jeans catastrophe, was the prediction of late 19th century/early 20th century classical physics that an ideal black body at thermal equilibrium will emit radiation in all frequency ranges, emitting more energy as the frequency increases. By calculating the total amount of radiated energy, it can be shown that a blackbody is likely to release an arbitrarily high amount of energy. This would cause all matter to instantaneously radiate all of its energy until it is near absolute zero - indicating that a new model for the behaviour of blackbodies was needed.

Black-body radiation thermal electromagnetic radiation

Black-body radiation is the thermal electromagnetic radiation within or surrounding a body in thermodynamic equilibrium with its environment, or emitted by a black body. It has a specific spectrum and intensity that depends only on the body's temperature, which is assumed for the sake of calculations and theory to be uniform and constant.

In statistical mechanics, a semi-classical derivation of the entropy that does not take into account the indistinguishability of particles, yields an expression for the entropy which is not extensive. This leads to a paradox known as the Gibbs paradox, after Josiah Willard Gibbs who proposed this thought experiment in 1874‒1875. The paradox allows for the entropy of closed systems to decrease, violating the second law of thermodynamics. A related paradox is the "mixing paradox". If one takes the perspective that the definition of entropy must be changed so as to ignore particle permutation, the paradox is averted.

Since classical physics corresponds more closely to ordinary language than modern physics does, this subject is also a part of the philosophical interpretation of ordinary language, which has other aspects, as well.

Philosophy of language, in the analytical tradition, explored logic, the nature of meaning, and accounts of the mind.

The measurement process

In classical mechanics it is assumed that given properties – speed or mass of a particle; temperature of a gas, etc. – can in principle be measured to any degree of accuracy desired.

Study of the problem of measurement in quantum mechanics has shown that measurement of any object involves interactions between the measuring apparatus and that object that inevitably affect it in some way; at the scale of particles this effect is necessarily large. On the everyday macroscopic scale the effect can be made small.

The framework of quantum mechanics requires a careful definition of measurement. The issue of measurement lies at the heart of the problem of the interpretation of quantum mechanics, for which there is currently no consensus. The question of how the operational process measurement affects the ontological state of the observed system is unresolved, and called the measurement problem.

Furthermore, the classical idealization of a property simply being "measured" ignores the fact that measurement of a property – temperature of a gas by thermometer, say – involves a pre-existing account of the behavior of the measuring device. When effort was devoted to working out the operational definitions involved in precisely determining position and momentum of micro-scale entities, physicists were required perforce to provide such an account for measuring devices to be used at that scale. The key thought experiment in this regard is known as Heisenberg's microscope.

Operational definition

An operational definition is the articulation of operationalization used in defining the terms of a process needed to determine the nature of an item or phenomenon and its properties such as duration, quantity, extension in space, chemical composition, etc. Since the degree of operationalization can vary itself, it can result in a more or less operational definition. The procedures included in definitions should be repeatable by anyone or at least by peers.

Heisenberg's microscope exists only as a thought experiment, one that was proposed by Werner Heisenberg, criticized by his mentor Niels Bohr, and subsequently served as the nucleus of some commonly held ideas, and misunderstandings, about Quantum Mechanics. In particular, it provided an argument for the uncertainty principle on the basis of the principles of classical optics. Recent theoretical and experimental developments have argued that Heisenberg's intuitive explanation of his mathematical result is misleading. While the act of measurement does lead to uncertainty, the loss of precision is less than that predicted by Heisenberg's argument when measured at the level of an individual state. The formal mathematical result remains valid, however, and the original intuitive argument has also been vindicated mathematically when the notion of disturbance is expanded to be independent of any specific state.

The problem for the individual is how to properly characterize a part of reality of which one has no direct sense experience. Our inquiries into the quantum domain find most pertinent whatever it is that happens in between the events by means of which we obtain our only information. Our accounts of the quantum domain are based on interactions of macro domain instruments and sense organs with physical events, and those interactions give us some but not all of the information we seek. We then seek to derive further information from series of those experiments in an indirect way.

One interpretation of this conundrum is given by Werner Heisenberg in his 1958 book, Physics and Philosophy,p. 144f:

We can say that physics is a part of science and as such aims at a description and understanding of nature. Any kind of understanding, scientific or not, depends on our language, on the communication of ideas. Every description of phenomena, of experiments and their results, rests upon language as the only means of communication. The words of this language represent the concepts of daily life, which in the scientific language of physics may be refined to the concepts of classical physics. These concepts are the only tools for an unambiguous communication about events, about the setting up of experiments, and about their results. If therefore the atomic physicist is asked to give a description of what really happens in his experiments, the words "description" and "really" and "happens" can only refer to the concepts of daily life or of classical physics. As soon as the physicist gave up this basis he would lose the means of unambiguous communication and could not continue in his science. Therefore, any statement about what has "actually happened" is a statement in terms of the classical concepts and -- because of thermodynamics and of the uncertainty relations -- by its very nature incomplete with respect to the details of the atomic events involved. The demand to "describe what happens" in the quantum-theoretical process between two successive observations is a contradiction in adjecto, since the word "describe" refers to the use of the classical concepts, while these concepts cannot be applied in the space between the observations; they can only be applied at the points of observation.

Primacy of observation in quantum mechanics and special relativity

Both quantum mechanics and special relativity begin their divergence from classical mechanics by insisting on the primacy of observations and a refusal to admit unobservable entities. Thus special relativity rejects the absolute simultaneity assumed by classical mechanics; and quantum mechanics does not permit one to speak of properties of the system (exact position, say) other than those that can be connected to macro scale observations. Position and momentum are not things waiting for us to discover; rather, they are the results that are obtained by performing certain procedures.

Notes

  1. ^ Messiah, Albert, Quantum Mechanics, volume I, pp. 45–50.

See also

Related Research Articles

The Copenhagen interpretation is an expression of the meaning of quantum mechanics that was largely devised from 1925 to 1927 by Niels Bohr and Werner Heisenberg. It remains one of the most commonly taught interpretations of quantum mechanics.

EPR paradox early and influential critique leveled against quantum mechanics

The Einstein–Podolsky–Rosen paradox is a thought experiment proposed by physicists Albert Einstein, Boris Podolsky and Nathan Rosen (EPR) that they interpreted as indicating that the explanation of physical reality provided by Quantum Mechanics was incomplete. In a 1935 paper titled Can Quantum-Mechanical Description of Physical Reality be Considered Complete?, they attempted to mathematically show that the wave function does not contain complete information about physical reality, and hence the Copenhagen interpretation is unsatisfactory; resolutions of the paradox have important implications for the interpretation of quantum mechanics.

The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. Such are distinguished from mathematical formalisms for theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces and operators on these spaces. Many of these structures are drawn from functional analysis, a research area within pure mathematics that was influenced in part by the needs of quantum mechanics. In brief, values of physical observables such as energy and momentum were no longer considered as values of functions on phase space, but as eigenvalues; more precisely as spectral values of linear operators in Hilbert space.

Physics Study of the fundamental properties of matter and energy

Physics is the natural science that studies matter, its motion, and behavior through space and time, and that studies the related entities of energy and force. Physics is one of the most fundamental scientific disciplines, and its main goal is to understand how the universe behaves.

Schrödingers cat thought experiment devised by Schrödinger

Schrödinger's cat is a thought experiment, sometimes described as a paradox, devised by Austrian physicist Erwin Schrödinger in 1935. It illustrates what he saw as the problem of the Copenhagen interpretation of quantum mechanics applied to everyday objects. The scenario presents a hypothetical cat that may be simultaneously both alive and dead, a state known as a quantum superposition, as a result of being linked to a random subatomic event that may or may not occur.

Wave–particle duality is the concept in quantum mechanics that every particle or quantum entity may be partly described in terms not only of particles, but also of waves. It expresses the inability of the classical concepts "particle" or "wave" to fully describe the behaviour of quantum-scale objects. As Albert Einstein wrote:

It seems as though we must use sometimes the one theory and sometimes the other, while at times we may use either. We are faced with a new kind of difficulty. We have two contradictory pictures of reality; separately neither of them fully explains the phenomena of light, but together they do.

In quantum mechanics, counterfactual definiteness (CFD) is the ability to speak "meaningfully" of the definiteness of the results of measurements that have not been performed. The term "counterfactual definiteness" is used in discussions of physics calculations, especially those related to the phenomenon called quantum entanglement and those related to the Bell inequalities. In such discussions "meaningfully" means the ability to treat these unmeasured results on an equal footing with measured results in statistical calculations. It is this aspect of counterfactual definiteness that is of direct relevance to physics and mathematical models of physical systems and not philosophical concerns regarding the meaning of unmeasured results.

Determinism is the philosophical idea that all events, including moral choices, are determined completely by previously existing causes. Determinism is at times understood to preclude free will because it entails that humans cannot act otherwise than they do. It can also be called hard determinism from this point of view. Hard determinism is a position on the relationship of determinism to free will. The theory holds that the universe is utterly rational because complete knowledge of any given situation assures that unerring knowledge of its future is also possible. Some philosophers suggest variants around this basic definition. Deterministic theories throughout the history of philosophy have sprung from diverse and sometimes overlapping motives and considerations. The opposite of determinism is some kind of indeterminism. Determinism is often contrasted with free will.

An interpretation of quantum mechanics is an attempt to explain how the mathematical theory of quantum mechanics "corresponds" to reality. Although quantum mechanics has held up to rigorous and extremely precise tests in an extraordinarily broad range of experiments, there exist a number of contending schools of thought over their interpretation.

Philosophy of physics

In philosophy, philosophy of physics deals with conceptual and interpretational issues in modern physics, and often overlaps with research done by certain kinds of theoretical physicists. Philosophy of physics can be very broadly lumped into three main areas:

Classical physics refers to theories of physics that predate modern, more complete, or more widely applicable theories

Classical physics refers to theories of physics that predate modern, more complete, or more widely applicable theories. If a currently accepted theory is considered to be modern, and its introduction represented a major paradigm shift, then the previous theories, or new theories based on the older paradigm, will often be referred to as belonging to the realm of "classical physics".

In physics, hidden-variable theories are held by some physicists who argue that the state of a physical system, as formulated by quantum mechanics, does not give a complete description for the system. An example would be that quantum mechanics is ultimately incomplete, and that a complete theory would provide descriptive categories to account for all observable behavior and thus avoid any indeterminism. The existence of indeterminacy for some measurements is a characteristic of prevalent interpretations of quantum mechanics; moreover, bounds for indeterminacy can be expressed in a quantitative form by the Heisenberg uncertainty principle.

In physics, action at a distance is the concept that an object can be moved, changed, or otherwise affected without being physically touched by another object. That is, it is the nonlocal interaction of objects that are separated in space.

Modern physics modern subfields or aspects of physics; often those using 20th century theories such as quantum mechanics

Modern physics is an effort to understand the underlying processes of the interactions of matter utilizing the tools of science & engineering. In general, the term is used to refer to any branch of physics either developed in the early 20th century and onwards, or branches greatly influenced by early 20th century physics.

In physics, complementarity is both a theoretical and an experimental result of quantum mechanics, also referred to as principle of complementarity. Formulated by Niels Bohr, a leading founder of quantum mechanics, the complementarity principle holds that objects have certain pairs of complementary properties which cannot all be observed or measured simultaneously.

The relational approach to quantum physics is an alternative approach to and interpretation of quantum mechanics. It asserts that the physical world can only be studied accurately in terms of relationships between systems, as all experimentally verifiable facts about the world result explicitly from interactions. According to the relational approach, the assumption that objects possess absolute properties inevitably leads to ambiguities and paradoxes when these objects are studied closely. The approach was adopted, in a time span of 1992-1996, by Q. Zheng, S. Hughes, and T. Kobayashi in the University of Tokyo. As early as in 1985, S. Kochen suggested that the paradoxes of quantum physics could be overcome by developing a relational approach, which was needed at one time to solve the paradoxes of relativistic physics of space and time. It is also hoped that this entry will serve as a complement to Rovelli’s relational quantum mechanics (RQM).

Branches of physics sub-field of study of physics

Physics deals with the combination of matter and energy. It also deals with a wide variety of systems, about which theories have been developed that are used by physicists. In general, theories are experimentally tested numerous times before they are accepted as correct as a description of Nature. For instance, the theory of classical mechanics accurately describes the motion of objects, provided they are much larger than atoms and moving at much less than the speed of light. These "central theories" are important tools for research in more specialized topics, and any physicist, regardless of his or her specialization, is expected to be literate in them.

Diederik Aerts is a Belgian theoretical physicist and a professor at Brussels Free University, where he directs the Center Leo Apostel for Interdisciplinary Studies (CLEA).

The von Neumann–Wigner interpretation, also described as "consciousness causes collapse [of the wave function]", is an interpretation of quantum mechanics in which consciousness is postulated to be necessary for the completion of the process of quantum measurement.

References