Pregeometry (model theory)

Last updated

Pregeometry, and in full combinatorial pregeometry, are essentially synonyms for "matroid". They were introduced by Gian-Carlo Rota with the intention of providing a less "ineffably cacophonous" alternative term. Also, the term combinatorial geometry, sometimes abbreviated to geometry, was intended to replace "simple matroid". These terms are now infrequently used in the study of matroids.

Contents

It turns out that many fundamental concepts of linear algebra – closure, independence, subspace, basis, dimension – are available in the general framework of pregeometries.

In the branch of mathematical logic called model theory, infinite finitary matroids, there called "pregeometries" (and "geometries" if they are simple matroids), are used in the discussion of independence phenomena. The study of how pregeometries, geometries, and abstract closure operators influence the structure of first-order models is called geometric stability theory.

Motivation

If is a vector space over some field and , we define to be the set of all linear combinations of vectors from , also known as the span of . Then we have and and . The Steinitz exchange lemma is equivalent to the statement: if , then

The linear algebra concepts of independent set, generating set, basis and dimension can all be expressed using the -operator alone. A pregeometry is an abstraction of this situation: we start with an arbitrary set and an arbitrary operator which assigns to each subset of a subset of , satisfying the properties above. Then we can define the "linear algebra" concepts also in this more general setting.

This generalized notion of dimension is very useful in model theory, where in certain situation one can argue as follows: two models with the same cardinality must have the same dimension and two models with the same dimension must be isomorphic.

Definitions

Pregeometries and geometries

A combinatorial pregeometry (also known as a finitary matroid) is a pair , where is a set and (called the closure map) satisfies the following axioms. For all and :

  1. is monotone increasing and dominates (i.e. implies ) and is idempotent (i.e.)
  2. Finite character: For each there is some finite with .
  3. Exchange principle: If , then (and hence by monotonicity and idempotence in fact ).

Sets of the form for some are called closed. It is then clear that finite intersections of closed sets are closed and that is the smallest closed set containing .

A geometry is a pregeometry in which the closure of singletons are singletons and the closure of the empty set is the empty set.

Independence, bases and dimension

Given sets , is independent over if for any . We say that is independent if it is independent over the empty set.

A set is a basis forover if it is independent over and .

A basis is the same as a maximal independent subset, and using Zorn's lemma one can show that every set has a basis. Since a pregeometry satisfies the Steinitz exchange property all bases are of the same cardinality, hence we may define the dimension of over , written as , as the cardinality of any basis of over . Again, the dimension of is defined to be the dimesion over the empty set.

The sets are independent over if whenever is a finite subset of . Note that this relation is symmetric.

Automorphisms and homogeneous pregeometries

An automorphism of a pregeometry is a bijection such that for any .

A pregeometry is said to be homogeneous if for any closed and any two elements there is an automorphism of which maps to and fixes pointwise.

The associated geometry and localizations

Given a pregeometry its associated geometry (sometimes referred in the literature as the canonical geometry) is the geometry where

  1. , and
  2. For any ,

Its easy to see that the associated geometry of a homogeneous pregeometry is homogeneous.

Given the localization of is the pregeometry where .

Types of pregeometries

The pregeometry is said to be:

Triviality, modularity and local modularity pass to the associated geometry and are preserved under localization.

If is a locally modular homogeneous pregeometry and then the localization of in is modular.

The geometry is modular if and only if whenever , , and then .

Examples

The trivial example

If is any set we may define for all . This pregeometry is a trivial, homogeneous, locally finite geometry.

Vector spaces and projective spaces

Let be a field (a division ring actually suffices) and let be a vector space over . Then is a pregeometry where closures of sets are defined to be their span. The closed sets are the linear subspaces of and the notion of dimension from linear algebra coincides with the pregeometry dimension.

This pregeometry is homogeneous and modular. Vector spaces are considered to be the prototypical example of modularity.

is locally finite if and only if is finite.

is not a geometry, as the closure of any nontrivial vector is a subspace of size at least .

The associated geometry of a -dimensional vector space over is the -dimensional projective space over . It is easy to see that this pregeometry is a projective geometry.

Affine spaces

Let be a -dimensional affine space over a field . Given a set define its closure to be its affine hull (i.e. the smallest affine subspace containing it).

This forms a homogeneous -dimensional geometry.

An affine space is not modular (for example, if and are parallel lines then the formula in the definition of modularity fails). However, it is easy to check that all localizations are modular.

Field extensions and transcendence degree

Let be a field extension. The set becomes a pregeometry if we define for . The set is independent in this pregeometry if and only if it is algebraically independent over . The dimension of coincides with the transcendence degree .

In model theory, the case of being algebraically closed and its prime field is especially important.

While vector spaces are modular and affine spaces are "almost" modular (i.e. everywhere locally modular), algebraically closed fields are examples of the other extremity, not being even locally modular (i.e. none of the localizations is modular).

Strongly minimal sets in model theory

Given a countable first-order language L and an L- structure M, any definable subset D of M that is strongly minimal gives rise to a pregeometry on the set D. The closure operator here is given by the algebraic closure in the model-theoretic sense.

A model of a strongly minimal theory is determined up to isomorphism by its dimension as a pregeometry; this fact is used in the proof of Morley's categoricity theorem.

In minimal sets over stable theories the independence relation coincides with the notion of forking independence.

Related Research Articles

<span class="mw-page-title-main">Convex set</span> In geometry, set whose intersection with every line is a single line segment

In geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is convex if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a convex set or a convex region is a subset that intersects every line into a single line segment . For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex.

In commutative algebra, the prime spectrum of a ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

<span class="mw-page-title-main">Topological group</span> Group that is a topological space with continuous group action

In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.

In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

In mathematics, Hilbert's Nullstellensatz is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields. This relationship was discovered by David Hilbert, who proved the Nullstellensatz in his second major paper on invariant theory in 1893.

<span class="mw-page-title-main">Complex geometry</span> Study of complex manifolds and several complex variables

In mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.

In combinatorics, a branch of mathematics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats. In the language of partially ordered sets, a finite simple matroid is equivalent to a geometric lattice.

<span class="mw-page-title-main">Affine space</span> Euclidean space without distance and angles

In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related to parallelism and ratio of lengths for parallel line segments.

<span class="mw-page-title-main">Affine variety</span> Algebraic variety defined within an affine space

In algebraic geometry, an affine variety, or affine algebraic variety, over an algebraically closed field k is the zero-locus in the affine space kn of some finite family of polynomials of n variables with coefficients in k that generate a prime ideal. If the condition of generating a prime ideal is removed, such a set is called an (affine) algebraic set. A Zariski open subvariety of an affine variety is called a quasi-affine variety.

<span class="mw-page-title-main">Projective variety</span>

In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .

In mathematics, a closure operator on a set S is a function from the power set of S to itself that satisfies the following conditions for all sets

In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often by means of an involution operation: if the dual of A is B, then the dual of B is A. Such involutions sometimes have fixed points, so that the dual of A is A itself. For example, Desargues' theorem is self-dual in this sense under the standard duality in projective geometry.

In the mathematical fields of linear algebra and functional analysis, the orthogonal complement of a subspace W of a vector space V equipped with a bilinear form B is the set W of all vectors in V that are orthogonal to every vector in W. Informally, it is called the perp, short for perpendicular complement. It is a subspace of V.

In functional and convex analysis, and related disciplines of mathematics, the polar set is a special convex set associated to any subset of a vector space , lying in the dual space The bipolar of a subset is the polar of but lies in .

A Dynkin system, named after Eugene Dynkin is a collection of subsets of another universal set satisfying a set of axioms weaker than those of 𝜎-algebra. Dynkin systems are sometimes referred to as 𝜆-systems or d-system. These set families have applications in measure theory and probability.

Affine geometry, broadly speaking, is the study of the geometrical properties of lines, planes, and their higher dimensional analogs, in which a notion of "parallel" is retained, but no metrical notions of distance or angle are. Affine spaces differ from linear spaces in that they do not have a distinguished choice of origin. So, in the words of Marcel Berger, "An affine space is nothing more than a vector space whose origin we try to forget about, by adding translations to the linear maps." Accordingly, a complex affine space, that is an affine space over the complex numbers, is like a complex vector space, but without a distinguished point to serve as the origin.

In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and the biregular maps are the isomorphisms of algebraic varieties. Because regular and biregular are very restrictive conditions – there are no non-constant regular functions on projective varieties – the concepts of rational and birational maps are widely used as well; they are partial functions that are defined locally by rational fractions instead of polynomials.

This is a glossary of algebraic geometry.

In the mathematical theory of matroids, a matroid representation is a family of vectors whose linear independence relation is the same as that of a given matroid. Matroid representations are analogous to group representations; both types of representation provide abstract algebraic structures with concrete descriptions in terms of linear algebra.

In mathematics, a basis of a matroid is a maximal independent set of the matroid—that is, an independent set that is not contained in any other independent set.

References