SAC programming language

Last updated
SAC
SAC language logo.png
Paradigm array, functional
Designed by Sven-Bodo Scholz, Clemens Grelck, et al.
Developer SaC Research Group
First appeared1994;29 years ago (1994)
Preview release 1.3.3-705-1 (September 20, 2021;19 months ago (2021-09-20)) [±]
Typing discipline static, strong
Implementation language C and SAC
OS POSIX-compliant UNIX
License Free software
Filename extensions .sac
Website www.sac-home.org
Influenced by
APL, SISAL, C

SAC (Single Assignment C) is a strict purely functional programming language whose design is focused on the needs of numerical applications. Emphasis is laid on efficient support for array processing via data parallelism. Efficiency concerns are essentially twofold. On the one hand, efficiency in program development is to be improved by the opportunity to specify array operations on a high level of abstraction. On the other hand, efficiency in program execution, i.e. the runtime performance of programs, in time and memory consumption, is still to be achieved by sophisticated compilation schemes. Only as far as the latter succeeds, the high-level style of specifications can actually be called useful.

To facilitate compiling to efficiently executable code, certain functional language features which are not considered essential for numerical applications, e.g. higher-order functions, polymorphism, or lazy evaluation, are not (yet) supported by SAC. These may be found in general-purpose functional languages, e.g. Haskell, Clean, Miranda, or ML.

To overcome the acceptance problems encountered by other functional or array based languages intended for numerical / array intensive applications, e.g. SISAL, NESL, Nial, APL, J, or K, particular regard is paid to ease the transition from a C / Fortran like programming environment to SAC.

In more detail, the basic language design goals of SAC are to:

Related Research Articles

In computer science, an abstract data type (ADT) is a mathematical model for data types. An abstract data type is defined by its behavior (semantics) from the point of view of a user, of the data, specifically in terms of possible values, possible operations on data of this type, and the behavior of these operations. This mathematical model contrasts with data structures, which are concrete representations of data, and are the point of view of an implementer, not a user.

C is a general-purpose computer programming language. It was created in the 1970s by Dennis Ritchie, and remains very widely used and influential. By design, C's features cleanly reflect the capabilities of the targeted CPUs. It has found lasting use in operating systems, device drivers, protocol stacks, though decreasingly for application software. C is commonly used on computer architectures that range from the largest supercomputers to the smallest microcontrollers and embedded systems.

<span class="mw-page-title-main">Fortran</span> General-purpose programming language

Fortran is a general-purpose, compiled imperative programming language that is especially suited to numeric computation and scientific computing.

<span class="mw-page-title-main">Programming language</span> Language for communicating instructions to a machine

A programming language is a system of notation for writing computer programs. Most programming languages are text-based formal languages, but they may also be graphical. They are a kind of computer language.

In computing, an optimizing compiler is a compiler that tries to minimize or maximize some attributes of an executable computer program. Common requirements are to minimize a program's execution time, memory footprint, storage size, and power consumption.

SISAL is a general-purpose single assignment functional programming language with strict semantics, implicit parallelism, and efficient array handling. SISAL outputs a dataflow graph in Intermediary Form 1 (IF1). It was derived from VAL, and adds recursion and finite streams. It has a Pascal-like syntax and was designed to be a common high-level language for numerical programs on a variety of multiprocessors.

<span class="mw-page-title-main">Data type</span> Attribute of data

In computer science and computer programming, a data type is a collection or grouping of data values, usually specified by a set of possible values, a set of allowed operations on these values, and/or a representation of these values as machine types. A data type specification in a program constrains the possible values that an expression, such as a variable or a function call, might take. On literal data, it tells the compiler or interpreter how the programmer intends to use the data. Most programming languages support basic data types of integer numbers, floating-point numbers, characters and Booleans.

Message Passing Interface (MPI) is a standardized and portable message-passing standard designed to function on parallel computing architectures. The MPI standard defines the syntax and semantics of library routines that are useful to a wide range of users writing portable message-passing programs in C, C++, and Fortran. There are several open-source MPI implementations, which fostered the development of a parallel software industry, and encouraged development of portable and scalable large-scale parallel applications.

In computer science, program optimization, code optimization, or software optimization, is the process of modifying a software system to make some aspect of it work more efficiently or use fewer resources. In general, a computer program may be optimized so that it executes more rapidly, or to make it capable of operating with less memory storage or other resources, or draw less power.

<span class="mw-page-title-main">D (programming language)</span> Multi-paradigm system programming language

D, also known as dlang, is a multi-paradigm system programming language created by Walter Bright at Digital Mars and released in 2001. Andrei Alexandrescu joined the design and development effort in 2007. Though it originated as a re-engineering of C++, D is a profoundly different language —features of D can be considered streamlined and expanded-upon ideas from C++, however D also draws inspiration from other high-level programming languages, notably Java, Python, Ruby, C#, and Eiffel.

In computer programming, an assignment statement sets and/or re-sets the value stored in the storage location(s) denoted by a variable name; in other words, it copies a value into the variable. In most imperative programming languages, the assignment statement is a fundamental construct.

<span class="mw-page-title-main">NumPy</span> Python library for numerical programming

NumPy is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. The predecessor of NumPy, Numeric, was originally created by Jim Hugunin with contributions from several other developers. In 2005, Travis Oliphant created NumPy by incorporating features of the competing Numarray into Numeric, with extensive modifications. NumPy is open-source software and has many contributors. NumPy is a NumFOCUS fiscally sponsored project.

IDL, short for Interactive Data Language, is a programming language used for data analysis. It is popular in particular areas of science, such as astronomy, atmospheric physics and medical imaging. IDL shares a common syntax with PV-Wave and originated from the same codebase, though the languages have subsequently diverged in detail. There are also free or costless implementations, such as GNU Data Language (GDL) and Fawlty Language (FL).

The Glasgow Haskell Compiler (GHC) is an open-source native code compiler for the functional programming language Haskell. It provides a cross-platform environment for the writing and testing of Haskell code and it supports numerous extensions, libraries, and optimisations that streamline the process of generating and executing code. GHC is the most commonly used Haskell compiler. The lead developers are Simon Peyton Jones and Simon Marlow.

In computer science, array programming refers to solutions which allow the application of operations to an entire set of values at once. Such solutions are commonly used in scientific and engineering settings.

In computer programming, dataflow programming is a programming paradigm that models a program as a directed graph of the data flowing between operations, thus implementing dataflow principles and architecture. Dataflow programming languages share some features of functional languages, and were generally developed in order to bring some functional concepts to a language more suitable for numeric processing. Some authors use the term datastream instead of dataflow to avoid confusion with dataflow computing or dataflow architecture, based on an indeterministic machine paradigm. Dataflow programming was pioneered by Jack Dennis and his graduate students at MIT in the 1960s.

Ch is a proprietary cross-platform C and C++ interpreter and scripting language environment. It was originally designed by Harry H. Cheng as a scripting language for beginners to learn mathematics, computing, numerical analysis, and programming in C/C++. Ch is now developed and marketed by SoftIntegration, Inc, with multiple versions available, including a freely available student edition and Ch Professional Edition for Raspberry Pi is free for non-commercial use.

<span class="mw-page-title-main">Dafny</span> Programming language

Dafny is an imperative and functional compiled language that compiles to other programming languages, such as C#, Java, JavaScript, Go and Python. It supports formal specification through preconditions, postconditions, loop invariants, loop variants, termination specifications and read/write framing specifications. The language combines ideas from the functional and imperative paradigms; it includes support for object-oriented programming. Features include generic classes, dynamic allocation, inductive datatypes and a variation of separation logic known as implicit dynamic frames for reasoning about side effects. Dafny was created by Rustan Leino at Microsoft Research after his previous work on developing ESC/Modula-3, ESC/Java, and Spec#.

References