Schwinger's quantum action principle

Last updated

The Schwinger's quantum action principle is a variational approach to quantum mechanics and quantum field theory. [1] [2] This theory was introduced by Julian Schwinger in a series of articles starting 1950. [3]

Contents

Approach

In Schwingers approach, the action principle is targeted towards quantum mechanics. The action becomes a quantum action, i.e. an operator, . Although it is superficially different from the path integral formulation where the action is a classical function, the modern formulation of the two formalisms are identical. [4]

Suppose we have two states defined by the values of a complete set of commuting operators at two times. Let the early and late states be and , respectively. Suppose that there is a parameter in the Lagrangian which can be varied, usually a source for a field. The main equation of Schwinger's quantum action principle is:

where the derivative is with respect to small changes () in the parameter, and with the Lagrange operator.

In the path integral formulation, the transition amplitude is represented by the sum over all histories of , with appropriate boundary conditions representing the states and . The infinitesimal change in the amplitude is clearly given by Schwinger's formula. Conversely, starting from Schwinger's formula, it is easy to show that the fields obey canonical commutation relations and the classical equations of motion, and so have a path integral representation. Schwinger's formulation was most significant because it could treat fermionic anticommuting fields with the same formalism as bose fields, thus implicitly introducing differentiation and integration with respect to anti-commuting coordinates.

See also

Related Research Articles

<span class="mw-page-title-main">Feynman diagram</span> Pictorial representation of the behavior of subatomic particles

In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduced the diagrams in 1948. The interaction of subatomic particles can be complex and difficult to understand; Feynman diagrams give a simple visualization of what would otherwise be an arcane and abstract formula. According to David Kaiser, "Since the middle of the 20th century, theoretical physicists have increasingly turned to this tool to help them undertake critical calculations. Feynman diagrams have revolutionized nearly every aspect of theoretical physics." While the diagrams are applied primarily to quantum field theory, they can also be used in other areas of physics, such as solid-state theory. Frank Wilczek wrote that the calculations that won him the 2004 Nobel Prize in Physics "would have been literally unthinkable without Feynman diagrams, as would [Wilczek's] calculations that established a route to production and observation of the Higgs particle."

The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which are a kind of linear space. Such are distinguished from mathematical formalisms for physics theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces, and operators on these spaces. In brief, values of physical observables such as energy and momentum were no longer considered as values of functions on phase space, but as eigenvalues; more precisely as spectral values of linear operators in Hilbert space.

<span class="mw-page-title-main">Quantum mechanics</span> Description of physical properties at the atomic and subatomic scale

Quantum mechanics is a fundamental theory in physics that describes the behavior of nature at and below the scale of atoms. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science.

<span class="mw-page-title-main">Quantum field theory</span> Theoretical framework

In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles.

<span class="mw-page-title-main">Uncertainty principle</span> Foundational principle in quantum physics

The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known.

In physics, a partition function describes the statistical properties of a system in thermodynamic equilibrium. Partition functions are functions of the thermodynamic state variables, such as the temperature and volume. Most of the aggregate thermodynamic variables of the system, such as the total energy, free energy, entropy, and pressure, can be expressed in terms of the partition function or its derivatives. The partition function is dimensionless.

<span class="mw-page-title-main">Path integral formulation</span> Formulation of quantum mechanics

The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.

The classical limit or correspondence limit is the ability of a physical theory to approximate or "recover" classical mechanics when considered over special values of its parameters. The classical limit is used with physical theories that predict non-classical behavior.

<span class="mw-page-title-main">Propagator</span> Function in quantum field theory showing probability amplitudes of moving particles

In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. These may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions.

In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities. For example,

<span class="mw-page-title-main">Schwinger–Dyson equation</span> Equations for correlation functions in QFT

The Schwinger–Dyson equations (SDEs) or Dyson–Schwinger equations, named after Julian Schwinger and Freeman Dyson, are general relations between correlation functions in quantum field theories (QFTs). They are also referred to as the Euler–Lagrange equations of quantum field theories, since they are the equations of motion corresponding to the Green's function. They form a set of infinitely many functional differential equations, all coupled to each other, sometimes referred to as the infinite tower of SDEs.

In theoretical physics, Euclidean quantum gravity is a version of quantum gravity. It seeks to use the Wick rotation to describe the force of gravity according to the principles of quantum mechanics.

<span class="mw-page-title-main">Effective action</span> Quantum version of the classical action

In quantum field theory, the quantum effective action is a modified expression for the classical action taking into account quantum corrections while ensuring that the principle of least action applies, meaning that extremizing the effective action yields the equations of motion for the vacuum expectation values of the quantum fields. The effective action also acts as a generating functional for one-particle irreducible correlation functions. The potential component of the effective action is called the effective potential, with the expectation value of the true vacuum being the minimum of this potential rather than the classical potential, making it important for studying spontaneous symmetry breaking.

In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary.

In theoretical physics, a source field is a background field coupled to the original field as

<span class="mw-page-title-main">Hamilton's principle</span> Formulation of the principle of stationary action

In physics, Hamilton's principle is William Rowan Hamilton's formulation of the principle of stationary action. It states that the dynamics of a physical system are determined by a variational problem for a functional based on a single function, the Lagrangian, which may contain all physical information concerning the system and the forces acting on it. The variational problem is equivalent to and allows for the derivation of the differential equations of motion of the physical system. Although formulated originally for classical mechanics, Hamilton's principle also applies to classical fields such as the electromagnetic and gravitational fields, and plays an important role in quantum mechanics, quantum field theory and criticality theories.

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.

In quantum mechanics, a raising or lowering operator is an operator that increases or decreases the eigenvalue of another operator. In quantum mechanics, the raising operator is sometimes called the creation operator, and the lowering operator the annihilation operator. Well-known applications of ladder operators in quantum mechanics are in the formalisms of the quantum harmonic oscillator and angular momentum.

This article relates the Schrödinger equation with the path integral formulation of quantum mechanics using a simple nonrelativistic one-dimensional single-particle Hamiltonian composed of kinetic and potential energy.

A quantum limit in physics is a limit on measurement accuracy at quantum scales. Depending on the context, the limit may be absolute, or it may only apply when the experiment is conducted with naturally occurring quantum states and can be circumvented with advanced state preparation and measurement schemes.

References

  1. Schwinger, Julian (2001). Englert, Berthold-Georg (ed.). Quantum Mechanics. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-662-04589-3. ISBN   978-3-642-07467-7.
  2. Dittrich, Walter (2021), "The Quantum Action Principle", The Development of the Action Principle, SpringerBriefs in Physics, Cham: Springer International Publishing, pp. 79–82, doi:10.1007/978-3-030-69105-9_11, ISBN   978-3-030-69104-2, S2CID   236705758 , retrieved 2022-10-19
  3. Schweber, Silvan S. (2005-05-31). "The sources of Schwinger's Green's functions". Proceedings of the National Academy of Sciences. 102 (22): 7783–7788. doi: 10.1073/pnas.0405167101 . ISSN   0027-8424. PMC   1142349 . PMID   15930139.
  4. Bracken, P (1997-04-04). "Quantum mechanics in terms of an action principle". Canadian Journal of Physics. 75 (4): 261–271. doi:10.1139/p96-142. ISSN   0008-4204.