Sharp-P-complete

Last updated

#P-complete, pronounced "sharp P complete" or "number P complete" is a complexity class in computational complexity theory. By definition, a problem is #P-complete if and only if it is in #P , and every problem in #P can be reduced to it by a polynomial-time counting reduction, i.e. a polynomial-time Turing reduction relating the cardinalities of solution sets. In some cases parsimonious reductions, a more specific type of reduction that preserves the exact number of solutions, is used. For either type of reduction, a problem is #P-complete if and only if it is in #P , and for any polynomial time non-deterministic Turing machine, the problem of computing its number of accepting paths has a polynomial-time reduction to this problem.

In computational complexity theory, a complexity class is a set of problems of related resource-based complexity. A typical complexity class has a definition of the form:

Computational complexity theory focuses on classifying computational problems according to their inherent difficulty, and relating these classes to each other. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm.

Reduction (complexity) the transformation of one computational problem to another, used to show that the second problem is as difficult as the first

In computability theory and computational complexity theory, a reduction is an algorithm for transforming one problem into another problem. A reduction from one problem to another may be used to show that the second problem is at least as difficult as the first.

Contents

Examples of #P-complete problems include:

In computational complexity theory, #SAT, or Sharp-SAT, a function problem related to the Boolean satisfiability problem, is the problem of counting the number of satisfying assignments of a given Boolean formula. It is well-known example for the class of counting problems, which are of special interest in computational complexity theory.

In boolean logic, a disjunctive normal form (DNF) is a standardization of a logical formula which is a disjunction of conjunctive clauses; it can also be described as an OR of ANDs, a sum of products, or a cluster concept. As a normal form, it is useful in automated theorem proving.

Graph theory study of graphs, which are mathematical structures used to model pairwise relations between objects

In mathematics, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices, nodes, or points which are connected by edges, arcs, or lines. A graph may be undirected, meaning that there is no distinction between the two vertices associated with each edge, or its edges may be directed from one vertex to another; see Graph for more detailed definitions and for other variations in the types of graph that are commonly considered. Graphs are one of the prime objects of study in discrete mathematics.

A polynomial-time algorithm for solving a #P-complete problem, if it existed, would imply P = NP, and thus P = PH . No such algorithm is currently known.

In computational complexity theory, P, also known as PTIME or DTIME(nO ), is a fundamental complexity class. It contains all decision problems that can be solved by a deterministic Turing machine using a polynomial amount of computation time, or polynomial time.

In computational complexity theory, the complexity class PH is the union of all complexity classes in the polynomial hierarchy:

Easy problems with hard counting versions

It is surprising that some #P-complete problems correspond to easy P problems. It is very easy to determine the satisfiability of a boolean formula in DNF: such a formula is satisfiable if and only if it contains a satisfiable conjunction (one that does not contain a variable and its negation), whereas counting the number of satisfying assignments is #P-complete. Also deciding 2-SAT is easy in contrast to counting the number of satisfying assignments. Topologically sorting is easy in contrast to counting the number of topological sortings. The same observation can be made for the perfect matching problem. It was known before that the decision problem "Is there a perfect matching for a given bipartite graph?" can be solved in polynomial time, and in fact, for a graph with V vertices and E edges, it can be solved in O(VE) time. The corresponding question "How many perfect matchings does the given bipartite graph have?" is already #P-complete. The problem of counting the number of perfect matchings (or in directed graphs: the number of vertex cycle covers) is known to be equivalent to the problem of the computation of the permanent of a matrix. The perfect matching counting problem was the first counting problem corresponding to an easy P problem shown to be #P-complete, in a 1979 paper by Leslie Valiant which also defined the classes #P and #P-complete for the first time. [2]

Vertex (graph theory) fundamental unit of which graphs (in graph theory) are formed

In mathematics, and more specifically in graph theory, a vertex or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges, while a directed graph consists of a set of vertices and a set of arcs. In a diagram of a graph, a vertex is usually represented by a circle with a label, and an edge is represented by a line or arrow extending from one vertex to another.

Big O notation notation to describe the limiting behavior of a function

Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. It is a member of a family of notations invented by Paul Bachmann, Edmund Landau, and others, collectively called Bachmann–Landau notation or asymptotic notation.

In mathematics, a vertex cycle cover of a graph G is a set of cycles which are subgraphs of G and contain all vertices of G.

Approximation

There are probabilistic algorithms that return good approximations to some #P-complete problems with high probability. This is one of the demonstrations of the power of probabilistic algorithms.

Many #P-complete problems have a fully polynomial-time randomized approximation scheme, or "FPRAS," which, informally, will produce with high probability an approximation to an arbitrary degree of accuracy, in time that is polynomial with respect to both the size of the problem and the degree of accuracy required. Jerrum, Valiant, and Vazirani showed that every #P-complete problem either has an FPRAS, or is essentially impossible to approximate; if there is any polynomial-time algorithm which consistently produces an approximation of a #P-complete problem which is within a polynomial ratio in the size of the input of the exact answer, then that algorithm can be used to construct an FPRAS. [3]

In computer science, a polynomial-time approximation scheme (PTAS) is a type of approximation algorithm for optimization problems.

Mark Richard Jerrum is a British computer scientist and computational theorist.

Leslie Valiant British computer scientist

Leslie Gabriel Valiant is a British computer scientist and computational theorist. He is currently the T. Jefferson Coolidge Professor of Computer Science and Applied Mathematics at Harvard University.

Related Research Articles

In computer science, the Boolean satisfiability problem is the problem of determining if there exists an interpretation that satisfies a given Boolean formula. In other words, it asks whether the variables of a given Boolean formula can be consistently replaced by the values TRUE or FALSE in such a way that the formula evaluates to TRUE. If this is the case, the formula is called satisfiable. On the other hand, if no such assignment exists, the function expressed by the formula is FALSE for all possible variable assignments and the formula is unsatisfiable. For example, the formula "a AND NOT b" is satisfiable because one can find the values a = TRUE and b = FALSE, which make = TRUE. In contrast, "a AND NOT a" is unsatisfiable.

In computational complexity theory, the complexity class ♯P is the set of the counting problems associated with the decision problems in the set NP. More formally, ♯P is the class of function problems of the form "compute f(x)", where f is the number of accepting paths of a nondeterministic Turing machine running in polynomial time. Unlike most well-known complexity classes, it is not a class of decision problems but a class of function problems.

In complexity theory, computational problems that are co-NP-complete are those that are the hardest problems in co-NP, in the sense that any problem in co-NP can be reformulated as a special case of any co-NP-complete problem with only polynomial overhead. If P is different from co-NP, then all of the co-NP-complete problems are not solvable in polynomial time. If there exists a way to solve a co-NP-complete problem quickly, then that algorithm can be used to solve all co-NP problems quickly.

In computer science, 2-satisfiability, 2-SAT or just 2SAT is a computational problem of assigning values to variables, each of which has two possible values, in order to satisfy a system of constraints on pairs of variables. It is a special case of the general Boolean satisfiability problem, which can involve constraints on more than two variables, and of constraint satisfaction problems, which can allow more than two choices for the value of each variable. But in contrast to those more general problems, which are NP-complete, 2-satisfiability can be solved in polynomial time.

In the mathematical discipline of graph theory, a matching or independent edge set in a graph is a set of edges without common vertices. Finding a matching in a bipartite graph can be treated as a network flow problem.

In computational complexity theory, the Cook–Levin theorem, also known as Cook's theorem, states that the Boolean satisfiability problem is NP-complete. That is, any problem in NP can be reduced in polynomial time by a deterministic Turing machine to the problem of determining whether a Boolean formula is satisfiable.

The Fulkerson Prize for outstanding papers in the area of discrete mathematics is sponsored jointly by the Mathematical Optimization Society (MOS) and the American Mathematical Society (AMS). Up to three awards of $1500 each are presented at each (triennial) International Symposium of the MOS. Originally, the prizes were paid out of a memorial fund administered by the AMS that was established by friends of the late Delbert Ray Fulkerson to encourage mathematical excellence in the fields of research exemplified by his work. The prizes are now funded by an endowment administered by MPS.

In complexity theory the class APX is the set of NP optimization problems that allow polynomial-time approximation algorithms with approximation ratio bounded by a constant. In simple terms, problems in this class have efficient algorithms that can find an answer within some fixed multiplicative factor of the optimal answer.

The Valiant–Vazirani theorem is a theorem in computational complexity theory stating that if there is a polynomial time algorithm for Unambiguous-SAT, then NP = RP. It was proven by Leslie Valiant and Vijay Vazirani in their paper titled NP is as easy as detecting unique solutions published in 1986. The proof is based on the Mulmuley–Vazirani–Vazirani isolation lemma, which was subsequently used for a number of important applications in theoretical computer science.

Vijay Vazirani American theoretical computer scientist

Vijay Virkumar Vazirani is an Indian American distinguished professor of computer science in the Donald Bren School of Information and Computer Sciences at the University of California, Irvine.

In computational complexity theory, the maximum satisfiability problem (MAX-SAT) is the problem of determining the maximum number of clauses, of a given Boolean formula in conjunctive normal form, that can be made true by an assignment of truth values to the variables of the formula. It is a generalization of the Boolean satisfiability problem, which asks whether there exists a truth assignment that makes all clauses true.

Tutte polynomial

The Tutte polynomial, also called the dichromate or the Tutte–Whitney polynomial, is a graph polynomial. It is a polynomial in two variables which plays an important role in graph theory. It is defined for every undirected graph and contains information about how the graph is connected. It is denoted by .

In computational complexity theory, a gadget is a subset of a problem instance that simulates the behavior of one of the fundamental units of a different computational problem. Gadgets are typically used to construct reductions from one computational problem to another, as part of proofs of NP-completeness or other types of computational hardness. The component design technique is a method for constructing reductions by using gadgets.

In linear algebra, the computation of the permanent of a matrix is a problem that is thought to be more difficult than the computation of the determinant of a matrix despite the apparent similarity of the definitions.

The #P-completeness of 01-permanent, sometimes known as Valiant's theorem, is a mathematical proof about the permanent of matrices, considered a seminal result in computational complexity theory. In a 1979 scholarly paper, Leslie Valiant proved that the computational problem of computing the permanent of a matrix is #P-hard, even if the matrix is restricted to have entries that are all 0 or 1. In this restricted case, computing the permanent is even #P-complete, because it corresponds to the #P problem of counting the number of permutation matrices one can get by changing ones into zeroes.

NP-completeness complexity class

In computational complexity theory, an NP-complete decision problem is one belonging to both the NP and the NP-hard complexity classes. In this context, NP stands for "nondeterministic polynomial time". The set of NP-complete problems is often denoted by NP-C or NPC.

In computational complexity theory, the exponential time hypothesis is an unproven computational hardness assumption that was formulated by Impagliazzo & Paturi (1999). The hypothesis states that 3-SAT cannot be solved in subexponential time in the worst case. The exponential time hypothesis, if true, would imply that P ≠ NP, but it is a stronger statement. It can be used to show that many computational problems are equivalent in complexity, in the sense that if one of them has a subexponential time algorithm then they all do.

In theoretical computer science, the term isolation lemma refers to randomized algorithms that reduce the number of solutions to a problem to one, should a solution exist. This is achieved by constructing random constraints such that, with non-negligible probability, exactly one solution satisfies these additional constraints if the solution space is not empty. Isolation lemmas have important applications in computer science, such as the Valiant–Vazirani theorem and Toda's theorem in computational complexity theory.

The FKT algorithm, named after Fisher, Kasteleyn, and Temperley, counts the number of perfect matchings in a planar graph in polynomial time. This same task is #P-complete for general graphs. Counting the number of matchings, even for planar graphs, is also #P-complete. The key idea is to convert the problem into a Pfaffian computation of a skew-symmetric matrix derived from a planar embedding of the graph. The Pfaffian of this matrix is then computed efficiently using standard determinant algorithms.

References

  1. Brightwell, Graham R.; Winkler, Peter (1991). "Counting linear extensions". Order . 8 (3): 225–242. doi:10.1007/BF00383444..
  2. Leslie G. Valiant (1979). "The Complexity of Computing the Permanent". Theoretical Computer Science. Elsevier. 8 (2): 189–201. doi:10.1016/0304-3975(79)90044-6.
  3. Mark R. Jerrum; Leslie G. Valiant; Vijay V. Vazirani (1986). "Random Generation of Combinatorial Structures from a Uniform Distribution". Theoretical Computer Science. Elsevier. 43: 169–188. doi:10.1016/0304-3975(86)90174-x.

Further reading