Ward's method

Last updated

In statistics, Ward's method is a criterion applied in hierarchical cluster analysis. Ward's minimum variance method is a special case of the objective function approach originally presented by Joe H. Ward, Jr. [1] Ward suggested a general agglomerative hierarchical clustering procedure, where the criterion for choosing the pair of clusters to merge at each step is based on the optimal value of an objective function. This objective function could be "any function that reflects the investigator's purpose." Many of the standard clustering procedures are contained in this very general class. To illustrate the procedure, Ward used the example where the objective function is the error sum of squares, and this example is known as Ward's method or more precisely Ward's minimum variance method.

Contents

The nearest-neighbor chain algorithm can be used to find the same clustering defined by Ward's method, in time proportional to the size of the input distance matrix and space linear in the number of points being clustered.

The minimum variance criterion

Ward's minimum variance criterion minimizes the total within-cluster variance. To implement this method, at each step find the pair of clusters that leads to minimum increase in total within-cluster variance after merging. This increase is a weighted squared distance between cluster centers. At the initial step, all clusters are singletons (clusters containing a single point). To apply a recursive algorithm under this objective function, the initial distance between individual objects must be (proportional to) squared Euclidean distance.

The initial cluster distances in Ward's minimum variance method are therefore defined to be the squared Euclidean distance between points:

Note: In software that implements Ward's method, it is important to check whether the function arguments should specify Euclidean distances or squared Euclidean distances.

Lance–Williams algorithms

Ward's minimum variance method can be defined and implemented recursively by a Lance–Williams algorithm. The Lance–Williams algorithms are an infinite family of agglomerative hierarchical clustering algorithms which are represented by a recursive formula for updating cluster distances at each step (each time a pair of clusters is merged). At each step, it is necessary to optimize the objective function (find the optimal pair of clusters to merge). The recursive formula simplifies finding the optimal pair.

Suppose that clusters and were next to be merged. At this point all of the current pairwise cluster distances are known. The recursive formula gives the updated cluster distances following the pending merge of clusters and . Let

An algorithm belongs to the Lance-Williams family if the updated cluster distance can be computed recursively by

where and are parameters, which may depend on cluster sizes, that together with the cluster distance function determine the clustering algorithm. Several standard clustering algorithms such as single linkage, complete linkage, and group average method have a recursive formula of the above type. A table of parameters for standard methods is given by several authors. [2] [3] [4]

Ward's minimum variance method can be implemented by the Lance–Williams formula. For disjoint clusters and with sizes and respectively:

Hence Ward's method can be implemented as a Lance–Williams algorithm with

Variations

The popularity of the Ward's method has led to variations of it. For instance, Wardp introduces the use of cluster specific feature weights, following the intuitive idea that features could have different degrees of relevance at different clusters. [5]

Related Research Articles

<span class="mw-page-title-main">Median</span> Middle quantile of a data set or probability distribution

In statistics and probability theory, the median is the value separating the higher half from the lower half of a data sample, a population, or a probability distribution. For a data set, it may be thought of as "the middle" value when data is orderly arranged. The basic feature of the median in describing data compared to the mean is that it is not skewed by a small proportion of extremely large or small values (outlier), and therefore provides a better representation of the center. Median income, for example, may be a better way to describe the center of an income distribution because increases in the largest incomes alone have no effect on median while the average of the distribution is influenced. For this reason, the median is of central importance in robust statistics.

<span class="mw-page-title-main">Least squares</span> Approximation method in statistics

The method of least squares is a parameters estimation method in regression analysis based on minimizing the sum of the squares of the residuals made in the results of each individual equation.

<span class="mw-page-title-main">Beta distribution</span> Probability distribution

In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.

<span class="mw-page-title-main">Multidimensional scaling</span> Set of related ordination techniques used in information visualization

Multidimensional scaling (MDS) is a means of visualizing the level of similarity of individual cases of a dataset. MDS is used to translate "information about the pairwise 'distances' among a set of objects or individuals" into a configuration of points mapped into an abstract Cartesian space.

<span class="mw-page-title-main">Hierarchical clustering</span> Statistical method of analysis which seeks to build a hierarchy of clusters

In data mining and statistics, hierarchical clustering is a method of cluster analysis that seeks to build a hierarchy of clusters. Strategies for hierarchical clustering generally fall into two categories:

In mathematics, computer science and especially graph theory, a distance matrix is a square matrix containing the distances, taken pairwise, between the elements of a set. Depending upon the application involved, the distance being used to define this matrix may or may not be a metric. If there are N elements, this matrix will have size N×N. In graph-theoretic applications, the elements are more often referred to as points, nodes or vertices.

<span class="mw-page-title-main">Gauss–Newton algorithm</span> Mathematical algorithm

The Gauss–Newton algorithm is used to solve non-linear least squares problems, which is equivalent to minimizing a sum of squared function values. It is an extension of Newton's method for finding a minimum of a non-linear function. Since a sum of squares must be nonnegative, the algorithm can be viewed as using Newton's method to iteratively approximate zeroes of the components of the sum, and thus minimizing the sum. In this sense, the algorithm is also an effective method for solving overdetermined systems of equations. It has the advantage that second derivatives, which can be challenging to compute, are not required.

Maximum Variance Unfolding (MVU), also known as Semidefinite Embedding (SDE), is an algorithm in computer science that uses semidefinite programming to perform non-linear dimensionality reduction of high-dimensional vectorial input data.

<i>k</i>-means clustering Vector quantization algorithm minimizing the sum of squared deviations

k-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean, serving as a prototype of the cluster. This results in a partitioning of the data space into Voronoi cells. k-means clustering minimizes within-cluster variances, but not regular Euclidean distances, which would be the more difficult Weber problem: the mean optimizes squared errors, whereas only the geometric median minimizes Euclidean distances. For instance, better Euclidean solutions can be found using k-medians and k-medoids.

<span class="mw-page-title-main">Fuzzy clustering</span>

Fuzzy clustering is a form of clustering in which each data point can belong to more than one cluster.

Stress majorization is an optimization strategy used in multidimensional scaling (MDS) where, for a set of -dimensional data items, a configuration of points in -dimensional space is sought that minimizes the so-called stress function . Usually is or , i.e. the matrix lists points in or dimensional Euclidean space so that the result may be visualised. The function is a cost or loss function that measures the squared differences between ideal distances and actual distances in r-dimensional space. It is defined as:

Non-linear least squares is the form of least squares analysis used to fit a set of m observations with a model that is non-linear in n unknown parameters (m ≥ n). It is used in some forms of nonlinear regression. The basis of the method is to approximate the model by a linear one and to refine the parameters by successive iterations. There are many similarities to linear least squares, but also some significant differences. In economic theory, the non-linear least squares method is applied in (i) the probit regression, (ii) threshold regression, (iii) smooth regression, (iv) logistic link regression, (v) Box–Cox transformed regressors ().

In machine learning, one-class classification (OCC), also known as unary classification or class-modelling, tries to identify objects of a specific class amongst all objects, by primarily learning from a training set containing only the objects of that class, although there exist variants of one-class classifiers where counter-examples are used to further refine the classification boundary. This is different from and more difficult than the traditional classification problem, which tries to distinguish between two or more classes with the training set containing objects from all the classes. Examples include the monitoring of helicopter gearboxes, motor failure prediction, or the operational status of a nuclear plant as 'normal': In this scenario, there are few, if any, examples of catastrophic system states; only the statistics of normal operation are known.

<span class="mw-page-title-main">BIRCH</span> Clustering using tree-based data aggregation

BIRCH is an unsupervised data mining algorithm used to perform hierarchical clustering over particularly large data-sets. With modifications it can also be used to accelerate k-means clustering and Gaussian mixture modeling with the expectation–maximization algorithm. An advantage of BIRCH is its ability to incrementally and dynamically cluster incoming, multi-dimensional metric data points in an attempt to produce the best quality clustering for a given set of resources. In most cases, BIRCH only requires a single scan of the database.

Determining the number of clusters in a data set, a quantity often labelled k as in the k-means algorithm, is a frequent problem in data clustering, and is a distinct issue from the process of actually solving the clustering problem.

In theoretical chemistry, the Buckingham potential is a formula proposed by Richard Buckingham which describes the Pauli exclusion principle and van der Waals energy for the interaction of two atoms that are not directly bonded as a function of the interatomic distance . It is a variety of interatomic potentials.

Energy distance is a statistical distance between probability distributions. If X and Y are independent random vectors in Rd with cumulative distribution functions (cdf) F and G respectively, then the energy distance between the distributions F and G is defined to be the square root of

In the theory of cluster analysis, the nearest-neighbor chain algorithm is an algorithm that can speed up several methods for agglomerative hierarchical clustering. These are methods that take a collection of points as input, and create a hierarchy of clusters of points by repeatedly merging pairs of smaller clusters to form larger clusters. The clustering methods that the nearest-neighbor chain algorithm can be used for include Ward's method, complete-linkage clustering, and single-linkage clustering; these all work by repeatedly merging the closest two clusters but use different definitions of the distance between clusters. The cluster distances for which the nearest-neighbor chain algorithm works are called reducible and are characterized by a simple inequality among certain cluster distances.

<span class="mw-page-title-main">Multiple kernel learning</span> Set of machine learning methods

Multiple kernel learning refers to a set of machine learning methods that use a predefined set of kernels and learn an optimal linear or non-linear combination of kernels as part of the algorithm. Reasons to use multiple kernel learning include a) the ability to select for an optimal kernel and parameters from a larger set of kernels, reducing bias due to kernel selection while allowing for more automated machine learning methods, and b) combining data from different sources that have different notions of similarity and thus require different kernels. Instead of creating a new kernel, multiple kernel algorithms can be used to combine kernels already established for each individual data source.

Regularized least squares (RLS) is a family of methods for solving the least-squares problem while using regularization to further constrain the resulting solution.

References

  1. Ward, J. H., Jr. (1963), "Hierarchical Grouping to Optimize an Objective Function", Journal of the American Statistical Association , 58, 236–244.
  2. Cormack, R. M. (1971), "A Review of Classification", Journal of the Royal Statistical Society , Series A, 134(3), 321-367.
  3. Gordon, A. D. (1999), Classification, 2nd Edition, Chapman and Hall, Boca Raton.
  4. Milligan, G. W. (1979), "Ultrametric Hierarchical Clustering Algorithms", Psychometrika, 44(3), 343–346.
  5. R.C. de Amorim (2015). "Feature Relevance in Ward's Hierarchical Clustering Using the Lp Norm" (PDF). Journal of Classification. 32 (1): 46–62. doi:10.1007/s00357-015-9167-1. S2CID   18099326.

Further reading