Weyl's theorem on complete reducibility

Last updated

In algebra, Weyl's theorem on complete reducibility is a fundamental result in the theory of Lie algebra representations (specifically in the representation theory of semisimple Lie algebras). Let be a semisimple Lie algebra over a field of characteristic zero. The theorem states that every finite-dimensional module over is semisimple as a module (i.e., a direct sum of simple modules.) [1]

Contents

The enveloping algebra is semisimple

Weyl's theorem implies (in fact is equivalent to) that the enveloping algebra of a finite-dimensional representation is a semisimple ring in the following way.

Given a finite-dimensional Lie algebra representation , let be the associative subalgebra of the endomorphism algebra of V generated by . The ring A is called the enveloping algebra of . If is semisimple, then A is semisimple. [2] (Proof: Since A is a finite-dimensional algebra, it is an Artinian ring; in particular, the Jacobson radical J is nilpotent. If V is simple, then implies that . In general, J kills each simple submodule of V; in particular, J kills V and so J is zero.) Conversely, if A is semisimple, then V is a semisimple A-module; i.e., semisimple as a -module. (Note that a module over a semisimple ring is semisimple since a module is a quotient of a free module and "semisimple" is preserved under the free and quotient constructions.)

Application: preservation of Jordan decomposition

Here is a typical application. [3]

Proposition  Let be a semisimple finite-dimensional Lie algebra over a field of characteristic zero. [lower-alpha 1]

  1. There exists a unique pair of elements in such that , is semisimple, is nilpotent and .
  2. If is a finite-dimensional representation, then and , where denote the Jordan decomposition of the semisimple and nilpotent parts of the endomorphism .

In short, the semisimple and nilpotent parts of an element of are well-defined and are determined independent of a faithful finite-dimensional representation.

Proof: First we prove the special case of (i) and (ii) when is the inclusion; i.e., is a subalgebra of . Let be the Jordan decomposition of the endomorphism , where are semisimple and nilpotent endomorphisms in . Now, also has the Jordan decomposition, which can be shown (see Jordan–Chevalley decomposition) to respect the above Jordan decomposition; i.e., are the semisimple and nilpotent parts of . Since are polynomials in then, we see . Thus, they are derivations of . Since is semisimple, we can find elements in such that and similarly for . Now, let A be the enveloping algebra of ; i.e., the subalgebra of the endomorphism algebra of V generated by . As noted above, A has zero Jacobson radical. Since , we see that is a nilpotent element in the center of A. But, in general, a central nilpotent belongs to the Jacobson radical; hence, and thus also . This proves the special case.

In general, is semisimple (resp. nilpotent) when is semisimple (resp. nilpotent).[ clarification needed ] This immediately gives (i) and (ii).

Proofs

Analytic proof

Weyl's original proof (for complex semisimple Lie algebras) was analytic in nature: it famously used the unitarian trick. Specifically, one can show that every complex semisimple Lie algebra is the complexification of the Lie algebra of a simply connected compact Lie group . [4] (If, for example, , then .) Given a representation of on a vector space one can first restrict to the Lie algebra of . Then, since is simply connected, [5] there is an associated representation of . Integration over produces an inner product on for which is unitary. [6] Complete reducibility of is then immediate and elementary arguments show that the original representation of is also completely reducible.

Algebraic proof 1

Let be a finite-dimensional representation of a Lie algebra over a field of characteristic zero. The theorem is an easy consequence of Whitehead's lemma, which says is surjective, where a linear map is a derivation if . The proof is essentially due to Whitehead. [7]

Let be a subrepresentation. Consider the vector subspace that consists of all linear maps such that and . It has a structure of a -module given by: for ,

.

Now, pick some projection onto W and consider given by . Since is a derivation, by Whitehead's lemma, we can write for some . We then have ; that is to say is -linear. Also, as t kills , is an idempotent such that . The kernel of is then a complementary representation to .

See also Weibel's homological algebra book.

Algebraic proof 2

Whitehead's lemma is typically proved by means of the quadratic Casimir element of the universal enveloping algebra, [8] and there is also a proof of the theorem that uses the Casimir element directly instead of Whitehead's lemma.

Since the quadratic Casimir element is in the center of the universal enveloping algebra, Schur's lemma tells us that acts as multiple of the identity in the irreducible representation of with highest weight . A key point is to establish that is nonzero whenever the representation is nontrivial. This can be done by a general argument [9] or by the explicit formula for .

Consider a very special case of the theorem on complete reducibility: the case where a representation contains a nontrivial, irreducible, invariant subspace of codimension one. Let denote the action of on . Since is not irreducible, is not necessarily a multiple of the identity, but it is a self-intertwining operator for . Then the restriction of to is a nonzero multiple of the identity. But since the quotient is a one dimensional—and therefore trivial—representation of , the action of on the quotient is trivial. It then easily follows that must have a nonzero kernel—and the kernel is an invariant subspace, since is a self-intertwiner. The kernel is then a one-dimensional invariant subspace, whose intersection with is zero. Thus, is an invariant complement to , so that decomposes as a direct sum of irreducible subspaces:

.

Although this establishes only a very special case of the desired result, this step is actually the critical one in the general argument.

Algebraic proof 3

The theorem can be deduced from the theory of Verma modules, which characterizes a simple module as a quotient of a Verma module by a maximal submodule. [10] This approach has an advantage that it can be used to weaken the finite-dimensionality assumptions (on algebra and representation).

Let be a finite-dimensional representation of a finite-dimensional semisimple Lie algebra over an algebraically closed field of characteristic zero. Let be the Borel subalgebra determined by a choice of a Cartan subalgebra and positive roots. Let . Then is an -module and thus has the -weight space decomposition:

where . For each , pick and the -submodule generated by and the -submodule generated by . We claim: . Suppose . By Lie's theorem, there exists a -weight vector in ; thus, we can find an -weight vector such that for some among the Chevalley generators. Now, has weight . Since is partially ordered, there is a such that ; i.e., . But this is a contradiction since are both primitive weights (it is known that the primitive weights are incomparable.[ clarification needed ]). Similarly, each is simple as a -module. Indeed, if it is not simple, then, for some , contains some nonzero vector that is not a highest-weight vector; again a contradiction.[ clarification needed ]

Related Research Articles

In the mathematical field of representation theory, a weight of an algebra A over a field F is an algebra homomorphism from A to F, or equivalently, a one-dimensional representation of A over F. It is the algebra analogue of a multiplicative character of a group. The importance of the concept, however, stems from its application to representations of Lie algebras and hence also to representations of algebraic and Lie groups. In this context, a weight of a representation is a generalization of the notion of an eigenvalue, and the corresponding eigenspace is called a weight space.

<span class="mw-page-title-main">Representation of a Lie group</span> Group representation

In mathematics and theoretical physics, a representation of a Lie group is a linear action of a Lie group on a vector space. Equivalently, a representation is a smooth homomorphism of the group into the group of invertible operators on the vector space. Representations play an important role in the study of continuous symmetry. A great deal is known about such representations, a basic tool in their study being the use of the corresponding 'infinitesimal' representations of Lie algebras.

<span class="mw-page-title-main">Lie algebra representation</span>

In the mathematical field of representation theory, a Lie algebra representation or representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices in such a way that the Lie bracket is given by the commutator. In the language of physics, one looks for a vector space together with a collection of operators on satisfying some fixed set of commutation relations, such as the relations satisfied by the angular momentum operators.

In mathematics, Schur's lemma is an elementary but extremely useful statement in representation theory of groups and algebras. In the group case it says that if M and N are two finite-dimensional irreducible representations of a group G and φ is a linear map from M to N that commutes with the action of the group, then either φ is invertible, or φ = 0. An important special case occurs when M = N, i.e. φ is a self-map; in particular, any element of the center of a group must act as a scalar operator on M. The lemma is named after Issai Schur who used it to prove the Schur orthogonality relations and develop the basics of the representation theory of finite groups. Schur's lemma admits generalisations to Lie groups and Lie algebras, the most common of which are due to Jacques Dixmier and Daniel Quillen.

<span class="mw-page-title-main">Compact group</span> Topological group with compact topology

In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space. Compact groups are a natural generalization of finite groups with the discrete topology and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to group actions and representation theory.

<span class="mw-page-title-main">Cartan subalgebra</span> Nilpotent subalgebra of a Lie algebra

In mathematics, a Cartan subalgebra, often abbreviated as CSA, is a nilpotent subalgebra of a Lie algebra that is self-normalising. They were introduced by Élie Cartan in his doctoral thesis. It controls the representation theory of a semi-simple Lie algebra over a field of characteristic .

<span class="mw-page-title-main">Semisimple Lie algebra</span> Direct sum of simple Lie algebras

In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras..

Verma modules, named after Daya-Nand Verma, are objects in the representation theory of Lie algebras, a branch of mathematics.

In mathematics, specifically the theory of Lie algebras, Lie's theorem states that, over an algebraically closed field of characteristic zero, if is a finite-dimensional representation of a solvable Lie algebra, then there's a flag of invariant subspaces of with , meaning that for each and i.

In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It was proved by Hermann Weyl. There is a closely related formula for the character of an irreducible representation of a semisimple Lie algebra. In Weyl's approach to the representation theory of connected compact Lie groups, the proof of the character formula is a key step in proving that every dominant integral element actually arises as the highest weight of some irreducible representation. Important consequences of the character formula are the Weyl dimension formula and the Kostant multiplicity formula.

In mathematics, specifically linear algebra, the Jordan–Chevalley decomposition, named after Camille Jordan and Claude Chevalley, expresses a linear operator in a unique way as the sum of two other linear operators which are simpler to understand. Specifically, one part is potentially diagonalisable and the other is nilpotent. The two parts are polynomials in the operator, which makes them behave nicely in algebraic manipulations.

Schur–Weyl duality is a mathematical theorem in representation theory that relates irreducible finite-dimensional representations of the general linear and symmetric groups. It is named after two pioneers of representation theory of Lie groups, Issai Schur, who discovered the phenomenon, and Hermann Weyl, who popularized it in his books on quantum mechanics and classical groups as a way of classifying representations of unitary and general linear groups.

In mathematics, a toral subalgebra is a Lie subalgebra of a general linear Lie algebra all of whose elements are semisimple. Equivalently, a Lie algebra is toral if it contains no nonzero nilpotent elements. Over an algebraically closed field, every toral Lie algebra is abelian; thus, its elements are simultaneously diagonalizable.

In homological algebra, Whitehead's lemmas represent a series of statements regarding representation theory of finite-dimensional, semisimple Lie algebras in characteristic zero. Historically, they are regarded as leading to the discovery of Lie algebra cohomology.

In mathematics, the tensor product of representations is a tensor product of vector spaces underlying representations together with the factor-wise group action on the product. This construction, together with the Clebsch–Gordan procedure, can be used to generate additional irreducible representations if one already knows a few.

This is a glossary of representation theory in mathematics.

In mathematics, specifically in representation theory, a semisimple representation is a linear representation of a group or an algebra that is a direct sum of simple representations. It is an example of the general mathematical notion of semisimplicity.

<span class="mw-page-title-main">Glossary of Lie groups and Lie algebras</span>

This is a glossary for the terminology applied in the mathematical theories of Lie groups and Lie algebras. For the topics in the representation theory of Lie groups and Lie algebras, see Glossary of representation theory. Because of the lack of other options, the glossary also includes some generalizations such as quantum group.

In abstract algebra, specifically the theory of Lie algebras, Serre's theorem states: given a root system , there exists a finite-dimensional semisimple Lie algebra whose root system is the given .

<span class="mw-page-title-main">Representation theory of semisimple Lie algebras</span>

In mathematics, the representation theory of semisimple Lie algebras is one of the crowning achievements of the theory of Lie groups and Lie algebras. The theory was worked out mainly by E. Cartan and H. Weyl and because of that, the theory is also known as the Cartan–Weyl theory. The theory gives the structural description and classification of a finite-dimensional representation of a semisimple Lie algebra ; in particular, it gives a way to parametrize irreducible finite-dimensional representations of a semisimple Lie algebra, the result known as the theorem of the highest weight.

References

  1. Editorial note: this fact is usually stated for a field of characteristic zero, but the proof needs only that the base field be perfect.
  1. Hall 2015 Theorem 10.9
  2. Jacobson 1979 , Ch. II, § 5, Theorem 10.
  3. Jacobson 1979 , Ch. III, § 11, Theorem 17.
  4. Knapp 2002 Theorem 6.11
  5. Hall 2015 Theorem 5.10
  6. Hall 2015 Theorem 4.28
  7. Jacobson 1979 , Ch. III, § 7.
  8. Hall 2015 Section 10.3
  9. Humphreys 1973 Section 6.2
  10. Kac 1990 , Lemma 9.5.