Weyl's tile argument

Last updated

In philosophy, Weyl's tile argument, introduced by Hermann Weyl in 1949, is an argument against the notion that physical space is "discrete", as if composed of a number of finite sized units or tiles. [1] The argument purports to show a distance function approximating Pythagoras' theorem on a discrete space cannot be defined and, since the Pythagorean theorem has been confirmed to be approximately true in nature, physical space is not discrete. [2] [3] [4] Academic debate on the topic continues, with counterarguments proposed in the literature. [5] [6] [7]

Contents

The argument

The tile argument appears in Weyl's 1949 book Philosophy of Mathematics and Natural Sciences, where he writes:

If a square is built up of miniature tiles, then there are as many tiles along the diagonal as there are along the side; thus the diagonal should be equal in length to the side. [1]

We approximate the diagonal with vertical and horizontal edges. No matter how large n is, the lengths don't match. Approximate the diagonal with vertical and horizontal edges.png
We approximate the diagonal with vertical and horizontal edges. No matter how large n is, the lengths don't match.

A demonstration of Weyl's argument proceeds by constructing a square tiling of the plane representing a discrete space. A discretized triangle, n units tall and n units long, can be constructed on the tiling. The hypotenuse of the resulting triangle will be n tiles long. However, by the Pythagorean theorem, a corresponding triangle in a continuous space—a triangle whose height and length are n—will have a hypotenuse measuring units long. To show that the former result does not converge to the latter for arbitrary values of n, one can examine the percent difference between the two results:

Since n cancels out, the two results never converge, even in the limit of large n. The argument can be constructed for more general triangles, but, in each case, the result is the same. Thus, a discrete space does not even approximate the Pythagorean theorem.

Responses

In response, Kris McDaniel has argued the Weyl tile argument depends on accepting a "size thesis" which posits that the distance between two points is given by the number of tiles between the two points. However, as McDaniel points out, the size thesis is not accepted for continuous spaces. Thus, we might have reason not to accept the size thesis for discrete spaces. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Pythagorean triple</span> Integer side lengths of a right triangle

A Pythagorean triple consists of three positive integers a, b, and c, such that a2 + b2 = c2. Such a triple is commonly written (a, b, c), and a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k. A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not. A triangle whose sides form a Pythagorean triple is called a Pythagorean triangle, and is necessarily a right triangle.

Zeno's paradoxes are a set of philosophical problems devised by the Eleatic Greek philosopher Zeno of Elea.

<span class="mw-page-title-main">Right triangle</span> Triangle containing a 90-degree angle

A right triangle or right-angled triangle (British), or more formally an orthogonal triangle, formerly called a rectangled triangle, is a triangle in which one angle is a right angle, i.e., in which two sides are perpendicular. The relation between the sides and other angles of the right triangle is the basis for trigonometry.

<span class="mw-page-title-main">Euclidean distance</span> Length of a line segment

In mathematics, the Euclidean distance between two points in Euclidean space is the length of the line segment between them. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, and therefore is occasionally called the Pythagorean distance.

<span class="mw-page-title-main">Hypotenuse</span> Longest side of a right-angled triangle, the side opposite of the right angle

In geometry, a hypotenuse is the longest side of a right-angled triangle, the side opposite the right angle. The length of the hypotenuse can be found using the Pythagorean theorem, which states that the square of the length of the hypotenuse equals the sum of the squares of the lengths of the other two sides. For example, if one of the other sides has a length of 3 and the other has a length of 4, then their squares add up to 25. The length of the hypotenuse is the square root of 25, that is, 5.

In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. It is a method which relies on the well-ordering principle, and is often used to show that a given equation, such as a Diophantine equation, has no solutions.

Digital physics is a speculative idea that the universe can be conceived of as a vast, digital computation device, or as the output of a deterministic or probabilistic computer program. The hypothesis that the universe is a digital computer was proposed by Konrad Zuse in his 1969 book Rechnender Raum. The term digital physics was coined by Edward Fredkin in 1978, who later came to prefer the term digital philosophy. Fredkin encouraged the creation of a digital physics group at what was then MIT's Laboratory for Computer Science, with Tommaso Toffoli and Norman Margolus as primary figures.

The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae, it is one of the basic relations between the sine and cosine functions.

The Baudhāyana sūtras are a group of Vedic Sanskrit texts which cover dharma, daily ritual, mathematics and is one of the oldest Dharma-related texts of Hinduism that have survived into the modern age from the 1st-millennium BCE. They belong to the Taittiriya branch of the Krishna Yajurveda school and are among the earliest texts of the genre.

John Earman is an American philosopher of physics. He is an emeritus professor in the History and Philosophy of Science department at the University of Pittsburgh. He has also taught at the University of California, Los Angeles, Rockefeller University, and the University of Minnesota, and was president of the Philosophy of Science Association.

The crystallographic restriction theorem in its basic form was based on the observation that the rotational symmetries of a crystal are usually limited to 2-fold, 3-fold, 4-fold, and 6-fold. However, quasicrystals can occur with other diffraction pattern symmetries, such as 5-fold; these were not discovered until 1982 by Dan Shechtman.

<span class="mw-page-title-main">Special right triangle</span> Right triangle with a feature making calculations on the triangle easier

A special right triangle is a right triangle with some regular feature that makes calculations on the triangle easier, or for which simple formulas exist. For example, a right triangle may have angles that form simple relationships, such as 45°–45°–90°. This is called an "angle-based" right triangle. A "side-based" right triangle is one in which the lengths of the sides form ratios of whole numbers, such as 3 : 4 : 5, or of other special numbers such as the golden ratio. Knowing the relationships of the angles or ratios of sides of these special right triangles allows one to quickly calculate various lengths in geometric problems without resorting to more advanced methods.

<span class="mw-page-title-main">Pythagorean prime</span>

A Pythagorean prime is a prime number of the form . Pythagorean primes are exactly the odd prime numbers that are the sum of two squares; this characterization is Fermat's theorem on sums of two squares.

In mathematics, Pythagorean addition is a binary operation on the real numbers that computes the length of the hypotenuse of a right triangle, given its two sides. According to the Pythagorean theorem, for a triangle with sides and , this length can be calculated as

<span class="mw-page-title-main">Spiral of Theodorus</span> Polygonal curve made from right triangles

In geometry, the spiral of Theodorus is a spiral composed of right triangles, placed edge-to-edge. It was named after Theodorus of Cyrene.

<span class="mw-page-title-main">Pythagorean theorem</span> Relation between sides of a right triangle

In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse is equal to the sum of the areas of the squares on the other two sides.

In mathematics, statistics and elsewhere, sums of squares occur in a number of contexts:

<span class="mw-page-title-main">Pythagorean tiling</span> Tiling by squares of two sizes

A Pythagorean tiling or two squares tessellation is a tiling of a Euclidean plane by squares of two different sizes, in which each square touches four squares of the other size on its four sides. Many proofs of the Pythagorean theorem are based on it, explaining its name. It is commonly used as a pattern for floor tiles. When used for this, it is also known as a hopscotch pattern or pinwheel pattern, but it should not be confused with the mathematical pinwheel tiling, an unrelated pattern.

Roman Frigg is a Swiss philosopher, Professor at the London School of Economics and Political Science and director of its Centre for Philosophy of Natural and Social Science. In 2016 he was awarded the Friedrich Wilhelm Bessel Research Award.

David Liggins is a philosopher at the University of Manchester with research interests in metaphysics and philosophy of mathematics.

References

  1. 1 2 Weyl, Hermann (1949). Philosophy of Mathematics and Natural Sciences. Princeton University Press.
  2. Hagar, Amit (2014). Discrete or Continuous?: The Quest for Fundamental Length in Modern Physics. Cambridge University Press. ISBN   978-1107062801.
  3. Cohen, S. Marc. "Atomism". faculty.washington.edu. Retrieved 2015-05-02.
  4. Fritz, Tobias (June 2013). "Velocity polytopes of periodic graphs and a no-go theorem for digital physics". Discrete Mathematics. 313 (12): 1289–1301. arXiv: 1109.1963 . Bibcode:2011arXiv1109.1963F. doi:10.1016/j.disc.2013.02.010. S2CID   15066745.
  5. 1 2 McDaniel, K. (2007). "Distance and Discrete Space". Synthese. 155 (1): 157–162. doi:10.1007/s11229-005-5034-7. ISSN   0039-7857. JSTOR   27653481. S2CID   8768211.
  6. Van Bendegem, Jean Paul (2019-09-12). "Finitism in Geometry". In Zalta, Edward N. (ed.). Stanford Encyclopedia of Philosophy .
  7. Chen, Lu (August 2021). "Intrinsic local distances: a mixed solution to Weyl's tile argument". Synthese. 198 (8): 7533–7552. arXiv: 2309.01962 . doi:10.1007/s11229-020-02531-4. ISSN   0039-7857. S2CID   210135018.