Zariski geometry

Last updated

In mathematics, a Zariski geometry consists of an abstract structure introduced by Ehud Hrushovski and Boris Zilber, in order to give a characterisation of the Zariski topology on an algebraic curve, and all its powers. The Zariski topology on a product of algebraic varieties is very rarely the product topology, but richer in closed sets defined by equations that mix two sets of variables. The result described gives that a very definite meaning, applying to projective curves and compact Riemann surfaces in particular.

Definition

A Zariski geometry consists of a set X and a topological structure on each of the sets

X, X2, X3, ...

satisfying certain axioms.

(N) Each of the Xn is a Noetherian topological space, of dimension at most n.

Some standard terminology for Noetherian spaces will now be assumed.

(A) In each Xn, the subsets defined by equality in an n-tuple are closed. The mappings

XmXn

defined by projecting out certain coordinates and setting others as constants are all continuous.

(B) For a projection

p: XmXn

and an irreducible closed subset Y of Xm, p(Y) lies between its closure Z and Z \ Z where Z is a proper closed subset of Z. (This is quantifier elimination, at an abstract level.)

(C) X is irreducible.

(D) There is a uniform bound on the number of elements of a fiber in a projection of any closed set in Xm, other than the cases where the fiber is X.

(E) A closed irreducible subset of Xm, of dimension r, when intersected with a diagonal subset in which s coordinates are set equal, has all components of dimension at least rs + 1.

The further condition required is called very ample (cf. very ample line bundle). It is assumed there is an irreducible closed subset P of some Xm, and an irreducible closed subset Q of P× X2, with the following properties:

(I) Given pairs (x, y), (x, y) in X2, for some t in P, the set of (t, u, v) in Q includes (t, x, y) but not (t, x, y)

(J) For t outside a proper closed subset of P, the set of (x, y) in X2, (t, x, y) in Q is an irreducible closed set of dimension 1.

(K) For all pairs (x, y), (x, y) in X2, selected from outside a proper closed subset, there is some t in P such that the set of (t, u, v) in Q includes (t, x, y) and (t, x, y).

Geometrically this says there are enough curves to separate points (I), and to connect points (K); and that such curves can be taken from a single parametric family.

Then Hrushovski and Zilber prove that under these conditions there is an algebraically closed field K, and a non-singular algebraic curve C, such that its Zariski geometry of powers and their Zariski topology is isomorphic to the given one. In short, the geometry can be algebraized.

Related Research Articles

<span class="mw-page-title-main">Algebraic geometry</span> Branch of mathematics

Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros.

In commutative algebra, the prime spectrum of a ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

In commutative algebra, the Krull dimension of a commutative ring R, named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules.

<span class="mw-page-title-main">Commutative ring</span> Algebraic structure

In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings.

<span class="mw-page-title-main">Zariski topology</span> Topology on prime ideals and algebraic varieties

In algebraic geometry and commutative algebra, the Zariski topology is a topology which is primarily defined by its closed sets. It is very different from topologies which are commonly used in the real or complex analysis; in particular, it is not Hausdorff. This topology was introduced primarily by Oscar Zariski and later generalized for making the set of prime ideals of a commutative ring a topological space.

<span class="mw-page-title-main">Commutative algebra</span> Branch of algebra that studies commutative rings

Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers ; and p-adic integers.

<span class="mw-page-title-main">Algebraic variety</span> Mathematical object studied in the field of algebraic geometry

Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.

<span class="mw-page-title-main">Affine variety</span> Algebraic variety defined within an affine space

In algebraic geometry, an affine variety, or affine algebraic variety, over an algebraically closed field k is the zero-locus in the affine space kn of some finite family of polynomials of n variables with coefficients in k that generate a prime ideal. If the condition of generating a prime ideal is removed, such a set is called an (affine) algebraic set. A Zariski open subvariety of an affine variety is called a quasi-affine variety.

<span class="mw-page-title-main">Projective variety</span>

In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .

In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.

In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.

In algebraic geometry, a proper morphism between schemes is an analog of a proper map between complex analytic spaces.

In algebraic geometry, an irreducible algebraic set or irreducible variety is an algebraic set that cannot be written as the union of two proper algebraic subsets. An irreducible component is an algebraic subset that is irreducible and maximal for this property. For example, the set of solutions of the equation xy = 0 is not irreducible, and its irreducible components are the two lines of equations x = 0 and y =0.

In mathematics, a Noetherian topological space, named for Emmy Noether, is a topological space in which closed subsets satisfy the descending chain condition. Equivalently, we could say that the open subsets satisfy the ascending chain condition, since they are the complements of the closed subsets. The Noetherian property of a topological space can also be seen as a strong compactness condition, namely that every open subset of such a space is compact, and in fact it is equivalent to the seemingly stronger statement that every subset is compact.

In algebraic geometry, a generic pointP of an algebraic variety X is, roughly speaking, a point at which all generic properties are true, a generic property being a property which is true for almost every point.

In the mathematical field of topology, a hyperconnected space or irreducible space is a topological space X that cannot be written as the union of two proper closed sets. The name irreducible space is preferred in algebraic geometry.

In abstract algebra, a completion is any of several related functors on rings and modules that result in complete topological rings and modules. Completion is similar to localization, and together they are among the most basic tools in analysing commutative rings. Complete commutative rings have a simpler structure than general ones, and Hensel's lemma applies to them. In algebraic geometry, a completion of a ring of functions R on a space X concentrates on a formal neighborhood of a point of X: heuristically, this is a neighborhood so small that all Taylor series centered at the point are convergent. An algebraic completion is constructed in a manner analogous to completion of a metric space with Cauchy sequences, and agrees with it in the case when R has a metric given by a non-Archimedean absolute value.

In algebraic geometry, Zariski's main theorem, proved by Oscar Zariski (1943), is a statement about the structure of birational morphisms stating roughly that there is only one branch at any normal point of a variety. It is the special case of Zariski's connectedness theorem when the two varieties are birational.

This is a glossary of algebraic geometry.

This is a glossary of commutative algebra.

References