Foxton Technology

Last updated

Foxton is an Intel code-name for a power-management technology that was originally planned for inclusion in the first dual-core Itanium 2 processor (code-named Montecito). By providing very granular control of voltages and clock frequencies within the processor, it enables software performance to be optimized for specific workloads, while ensuring that power consumption remains below a particular value. Due to unspecified issues, Foxton was not included in the initial release of Montecito. According to sources inside Intel, it is under consideration for future Itanium 2 processor versions.

How it works

Foxton technology includes a highly advanced clock generation and distribution network. With this technology, the processor continuously measures total power draw, processor loads, voltage, and clock distribution quality across the entire device, and is able to produce extremely fine clock-to-voltage granularity under dynamic conditions. As a result, Foxton enables a processor to override factory adjusted settings, which are set at relatively high voltage levels at any given frequency to ensure stability against random voltage variances. By dynamically controlling voltage and frequencies across the entire device, Foxton is able to optimize performance for specific workloads, while ensuring that power consumption remains below specified thresholds.

Foxton improves power efficiency at any given clock rate, but that is not the primary reason it was developed. Itanium 2 processors implement a wide microarchitecture, which has enormous computing capacity (theoretically capable of sustaining a throughput of six instructions per cycle). However, many software applications can not utilize all the available execution resources, lacking adequate instruction-level parallelism. Idle resources mean lower transistor switching activity, thus lower overall power consumption. Because Itanium 2 maintains such a wide and capable architecture, the decrease in power consumption for average code execution can be substantial. Since modern MPUs clock rates are constrained by power, not filling out the power envelope translates to lost performance. Foxton takes advantage of this decrease by increasing clock frequencies to accelerate performance, while keeping total power consumption below specified thresholds. The result is a processor architecture that can dynamically optimize performance versus power consumption across a broad range of workloads.

A Foxton-enabled chip has a variable voltage and frequency adjusted to a nominal power envelope that can be specified from software. Clock and voltage are adjusted to keep the chip's consumption within the envelope. Depending on the actual usage pattern the chip will be able to scale up or down, feeding the core with proper voltage. Under so called "low activity" workloads, which generate less heat while being executed, the processor speeds up until it reaches the nominal power setting. Inversely, "high activity" loads may cause the chip to reduce core voltage and clock rate to stay below the nominal power setting. Low-activity workloads typically include integer-intensive computations, such as commercial, database applications. Foxton technology should increase performance for these applications by about 10% compared with the same processor running with a "fixed clock." High activity workloads include floating point-intensive computations, such as scientific and R&D simulations. Nominal clock speeds for Itanium processors with Foxton should be based on power consumption for these intensive computations.

Intel said Foxton technology will not only appear in the Itanium family, but later in Xeons as well. However, no specific time-frame has been set so far.

See also

Related Research Articles

<span class="mw-page-title-main">IA-64</span> Instruction set architecture of the Itanium family of 64-bit Intel microprocessors

IA-64 is the instruction set architecture (ISA) of the Itanium family of 64-bit Intel microprocessors. The basic ISA specification originated at Hewlett-Packard (HP), and was subsequently implemented by Intel in collaboration with HP. The first Itanium processor, codenamed Merced, was released in 2001.

<span class="mw-page-title-main">System on a chip</span> Micro-electronic component

A system on a chip or system-on-chip is an integrated circuit that integrates most or all components of a computer or other electronic system. These components almost always include a central processing unit (CPU), memory interfaces, on-chip input/output devices, input/output interfaces, and secondary storage interfaces, often alongside other components such as radio modems and a graphics processing unit (GPU) – all on a single substrate or microchip. It may contain digital, and also analog, mixed-signal, and often radio frequency signal processing functions.

<span class="mw-page-title-main">Overclocking</span> Practice of increasing the clock rate of a computer to exceed that certified by the manufacturer

In computing, overclocking is the practice of increasing the clock rate of a computer to exceed that certified by the manufacturer. Commonly, operating voltage is also increased to maintain a component's operational stability at accelerated speeds. Semiconductor devices operated at higher frequencies and voltages increase power consumption and heat. An overclocked device may be unreliable or fail completely if the additional heat load is not removed or power delivery components cannot meet increased power demands. Many device warranties state that overclocking or over-specification voids any warranty, however there are some manufacturers that will allow overclocking as long as performed (relatively) safely.

Processor power dissipation or processing unit power dissipation is the process in which computer processors consume electrical energy, and dissipate this energy in the form of heat due to the resistance in the electronic circuits.

Underclocking, also known as downclocking, is modifying a computer or electronic circuit's timing settings to run at a lower clock rate than is specified. Underclocking is used to reduce a computer's power consumption, increase battery life, reduce heat emission, and it may also increase the system's stability, lifespan/reliability and compatibility. Underclocking may be implemented by the factory, but many computers and components may be underclocked by the end user.

Power management is a feature of some electrical appliances, especially copiers, computers, computer CPUs, computer GPUs and computer peripherals such as monitors and printers, that turns off the power or switches the system to a low-power state when inactive. In computing this is known as PC power management and is built around a standard called ACPI, this supersedes APM. All recent computers have ACPI support.

Montecito is the code-name of a major release of Intel's Itanium 2 Processor Family (IPF), which implements the Intel Itanium architecture on a dual-core processor. It was officially launched by Intel on July 18, 2006 as the "Dual-Core Intel Itanium 2 processor". According to Intel, Montecito doubles performance versus the previous, single-core Itanium 2 processor, and reduces power consumption by about 20%. It also adds multi-threading capabilities, a greatly expanded cache subsystem, and silicon support for virtualization.

<span class="mw-page-title-main">POWER5</span> 2004 family of multiprocessors by IBM

The POWER5 is a microprocessor developed and fabricated by IBM. It is an improved version of the POWER4. The principal improvements are support for simultaneous multithreading (SMT) and an on-die memory controller. The POWER5 is a dual-core microprocessor, with each core supporting one physical thread and two logical threads, for a total of two physical threads and four logical threads.

The thermal design power (TDP), sometimes called thermal design point, is the maximum amount of heat generated by a computer chip or component that the cooling system in a computer is designed to dissipate under any workload.

AMD Cool'n'Quiet is a CPU dynamic frequency scaling and power saving technology introduced by AMD with its Athlon XP processor line. It works by reducing the processor's clock rate and voltage when the processor is idle. The aim of this technology is to reduce overall power consumption and lower heat generation, allowing for slower cooling fan operation. The objectives of cooler and quieter result in the name Cool'n'Quiet. The technology is similar to Intel's SpeedStep and AMD's own PowerNow!, which were developed with the aim of increasing laptop battery life by reducing power consumption.

Enhanced SpeedStep is a series of dynamic frequency scaling technologies built into some Intel microprocessors that allow the clock speed of the processor to be dynamically changed by software. This allows the processor to meet the instantaneous performance needs of the operation being performed, while minimizing power draw and heat generation. EIST was introduced in several Prescott 6 series in the first quarter of 2005, namely the Pentium 4 660. Intel Speed Shift Technology (SST) was introduced in Intel Skylake Processor.

Power optimization is the use of electronic design automation tools to optimize (reduce) the power consumption of a digital design, such as that of an integrated circuit, while preserving the functionality.

Dynamic frequency scaling is a power management technique in computer architecture whereby the frequency of a microprocessor can be automatically adjusted "on the fly" depending on the actual needs, to conserve power and reduce the amount of heat generated by the chip. Dynamic frequency scaling helps preserve battery on mobile devices and decrease cooling cost and noise on quiet computing settings, or can be useful as a security measure for overheated systems.

In computer architecture, dynamic voltage scaling is a power management technique in which the voltage used in a component is increased or decreased, depending upon circumstances. Dynamic voltage scaling to increase voltage is known as overvolting; dynamic voltage scaling to decrease voltage is known as undervolting. Undervolting is done in order to conserve power, particularly in laptops and other mobile devices, where energy comes from a battery and thus is limited, or in rare cases, to increase reliability. Overvolting is done in order to support higher frequencies for performance.

Low-power electronics are electronics, such as notebook processors, that have been designed to use less electric power than usual, often at some expense. In the case of notebook processors, this expense is processing power; notebook processors usually consume less power than their desktop counterparts, at the expense of lower processing power.

Memory timings or RAM timings describe the timing information of a memory module. Due to the inherent qualities of VLSI and microelectronics, memory chips require time to fully execute commands. Executing commands too quickly will result in data corruption and results in system instability. With appropriate time between commands, memory modules/chips can be given the opportunity to fully switch transistors, charge capacitors and correctly signal back information to the memory controller. Because system performance depends on how fast memory can be used, this timing directly affects the performance of the system.

Electronic systems’ power consumption has been a real challenge for Hardware and Software designers as well as users especially in portable devices like cell phones and laptop computers. Power consumption also has been an issue for many industries that use computer systems heavily such as Internet service providers using servers or companies with many employees using computers and other computational devices. Many different approaches have been discovered by researchers to estimate power consumption efficiently. This survey paper focuses on the different methods where power consumption can be estimated or measured in real-time.

<span class="mw-page-title-main">Adaptive voltage scaling</span>

Adaptive voltage scaling (AVS) is a closed-loop dynamic power minimization technique that adjusts the voltage supplied to a computer chip to match the chip's power needs during operation. Many computer chips, especially those in mobile devices or Internet of things devices are constrained by the power available and face varying workloads. In other situations a chip may be constrained by the amount of heat it is allowed to generate. In addition, individual chips can vary in their efficiency due to many factors, including minor differences in manufacturing conditions. AVS allows the voltage supplied to the chip, and therefore its power consumption, to be continuously adjusted to be appropriate to the workload and the parameters of the specific chip. This is accomplished by integrating a device that monitors the performance of the chip into the chip, which then provides information to a power controller.

AMD Turbo Core a.k.a. AMD Core Performance Boost (CPB) is a dynamic frequency scaling technology implemented by AMD that allows the processor to dynamically adjust and control the processor operating frequency in certain versions of its processors which allows for increased performance when needed while maintaining lower power and thermal parameters during normal operation. AMD Turbo Core technology has been implemented beginning with the Phenom II X6 microprocessors based on the AMD K10 microarchitecture. AMD Turbo Core is available with some AMD A-Series accelerated processing units.