Frattini's argument

Last updated

In group theory, a branch of mathematics, Frattini's argument is an important lemma in the structure theory of finite groups. It is named after Giovanni Frattini, who used it in a paper from 1885 when defining the Frattini subgroup of a group. The argument was taken by Frattini, as he himself admits, from a paper of Alfredo Capelli dated 1884. [1]

Contents

Frattini's argument

Statement

If is a finite group with normal subgroup , and if is a Sylow p-subgroup of , then

where denotes the normalizer of in , and means the product of group subsets.

Proof

The group is a Sylow -subgroup of , so every Sylow -subgroup of is an -conjugate of , that is, it is of the form for some (see Sylow theorems). Let be any element of . Since is normal in , the subgroup is contained in . This means that is a Sylow -subgroup of . Then, by the above, it must be -conjugate to : that is, for some

and so

Thus

and therefore . But was arbitrary, and so

Applications

Related Research Articles

<span class="mw-page-title-main">Normal subgroup</span> Subgroup invariant under conjugation

In abstract algebra, a normal subgroup is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup of the group is normal in if and only if for all and The usual notation for this relation is

<span class="texhtml mvar" style="font-style:italic;">p</span>-group Group in which the order of every element is a power of p

In mathematics, specifically group theory, given a prime number p, a p-group is a group in which the order of every element is a power of p. That is, for each element g of a p-group G, there exists a nonnegative integer n such that the product of pn copies of g, and not fewer, is equal to the identity element. The orders of different elements may be different powers of p.

In mathematics, one can define a product of group subsets in a natural way. If S and T are subsets of a group G, then their product is the subset of G defined by

<span class="mw-page-title-main">Symmetric group</span> Type of group in abstract algebra

In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group defined over a finite set of symbols consists of the permutations that can be performed on the symbols. Since there are such permutation operations, the order of the symmetric group is .

<span class="mw-page-title-main">Simple group</span> Group without normal subgroups other than the trivial group and itself

In mathematics, a simple group is a nontrivial group whose only normal subgroups are the trivial group and the group itself. A group that is not simple can be broken into two smaller groups, namely a nontrivial normal subgroup and the corresponding quotient group. This process can be repeated, and for finite groups one eventually arrives at uniquely determined simple groups, by the Jordan–Hölder theorem.

<span class="mw-page-title-main">Sylow theorems</span> Theorems that help decompose a finite group based on prime factors of its order

In mathematics, specifically in the field of finite group theory, the Sylow theorems are a collection of theorems named after the Norwegian mathematician Peter Ludwig Sylow that give detailed information about the number of subgroups of fixed order that a given finite group contains. The Sylow theorems form a fundamental part of finite group theory and have very important applications in the classification of finite simple groups.

<span class="mw-page-title-main">Nilpotent group</span> Group that has an upper central series terminating with G

In mathematics, specifically group theory, a nilpotent groupG is a group that has an upper central series that terminates with G. Equivalently, it has a central series of finite length or its lower central series terminates with {1}.

<span class="mw-page-title-main">Glossary of group theory</span>

A group is a set together with an associative operation that admits an identity element and such that there exists an inverse for every element.

<span class="mw-page-title-main">Frattini subgroup</span>

In mathematics, particularly in group theory, the Frattini subgroup of a group G is the intersection of all maximal subgroups of G. For the case that G has no maximal subgroups, for example the trivial group {e} or a Prüfer group, it is defined by . It is analogous to the Jacobson radical in the theory of rings, and intuitively can be thought of as the subgroup of "small elements". It is named after Giovanni Frattini, who defined the concept in a paper published in 1885.

In mathematics, the Feit–Thompson theorem, or odd order theorem, states that every finite group of odd order is solvable. It was proved by Walter Feit and John Griggs Thompson.

<span class="mw-page-title-main">Frobenius group</span>

In mathematics, a Frobenius group is a transitive permutation group on a finite set, such that no non-trivial element fixes more than one point and some non-trivial element fixes a point. They are named after F. G. Frobenius.

<span class="mw-page-title-main">Hall subgroup</span>

In mathematics, specifically group theory, a Hall subgroup of a finite group G is a subgroup whose order is coprime to its index. They were introduced by the group theorist Philip Hall.

<span class="mw-page-title-main">Burnside's theorem</span> Mathematic group theory

In mathematics, Burnside's theorem in group theory states that if G is a finite group of order where p and q are prime numbers, and a and b are non-negative integers, then G is solvable. Hence each non-Abelian finite simple group has order divisible by at least three distinct primes.

In mathematics, in the field of group theory, a subgroup H of a given group G is a subnormal subgroup of G if there is a finite chain of subgroups of the group, each one normal in the next, beginning at H and ending at G.

In mathematics, in the field of group theory, a locally finite group is a type of group that can be studied in ways analogous to a finite group. Sylow subgroups, Carter subgroups, and abelian subgroups of locally finite groups have been studied. The concept is credited to work in the 1930s by Russian mathematician Sergei Chernikov.

The Schur–Zassenhaus theorem is a theorem in group theory which states that if is a finite group, and is a normal subgroup whose order is coprime to the order of the quotient group , then is a semidirect product of and . An alternative statement of the theorem is that any normal Hall subgroup of a finite group has a complement in . Moreover if either or is solvable then the Schur–Zassenhaus theorem also states that all complements of in are conjugate. The assumption that either or is solvable can be dropped as it is always satisfied, but all known proofs of this require the use of the much harder Feit–Thompson theorem.

<span class="mw-page-title-main">Giovanni Frattini</span> Italian mathematician

Giovanni Frattini was an Italian mathematician, noted for his contributions to group theory.

In mathematics, George Glauberman's Z* theorem is stated as follows:

Z* theorem: Let G be a finite group, with O(G) being its maximal normal subgroup of odd order. If T is a Sylow 2-subgroup of G containing an involution not conjugate in G to any other element of T, then the involution lies in Z*(G), which is the inverse image in G of the center of G/O(G).

In abstract algebra, the focal subgroup theorem describes the fusion of elements in a Sylow subgroup of a finite group. The focal subgroup theorem was introduced in and is the "first major application of the transfer" according to. The focal subgroup theorem relates the ideas of transfer and fusion such as described by Otto Grün in. Various applications of these ideas include local criteria for p-nilpotence and various non-simplicity criteria focussing on showing that a finite group has a normal subgroup of index p.

References