Global Powder Metallurgy Property Database

Last updated

The Global Powder Metallurgy Database (GPMD) is an online searchable database that has been developed as the result of a joint project between leading regional powder metallurgy (PM) trade associations, the EPMA and its sister organisations in Japan (JPMA) and North America (MPIF).

This database was created in response to a worldwide recognition that the absence of a readily accessible source of design data was acting as a significant impediment to the wider application of PM products.

Primarily aimed at designers and engineers in the industries using PM products, it is designed to provide verified physical, mechanical and fatigue data for a range of commercially available PM materials. This culminated in the initial launch of the database at the PM World Congress in Vienna in October 2004. The content of the database, at this launch, was restricted to data on low alloy ferrous and stainless steel PM structural part grades and bronze and iron-based PM bearing grades.

However, enhancement and extension of content and searching capability has been an ongoing process ever since. In January 2007, the content was expanded with the addition of data on non-ferrous PM structural part grades, followed, in March 2007, by the introduction of a new section covering data on Metal Injection Moulding (MIM) materials.

The latest extension to capability involves making full SN Fatigue Curve "pages" (comprising SN curves and details of individual test points) accessible to searchers. The initial content comprises over 130 SN Curve pages, covering a range of Fe-Cu-C grades and based on published information that has been analysed and collated by the group led by Professor Paul Beiss at the Technical University of Aachen. The collated SN curves cover a range of material processing conditions and density levels and a range of fatigue testing conditions (fatigue loading mode, mean stress level and notch factor).

In assembling the GPMD content, a broad range of mechanical, fatigue and physical property data has been collected from the associations’ memberships and rigorously evaluated by regional accreditation committees. However, the database's primary targets are designers and material specifiers in end-user industries who may have no prior knowledge of PM. Therefore, the bulk of the search structure has been designed to take such a searcher to the point where they can decide that they ought to contact a PM parts manufacturer to discuss a potential application in more detail.

Related Research Articles

<span class="mw-page-title-main">Metallurgy</span> Field of science that studies the physical and chemical behavior of metals

Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are known as alloys.

<span class="mw-page-title-main">Sintering</span> Process of forming and bonding material by heat or pressure

Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing process used with metals, ceramics, plastics, and other materials. The nanoparticles in the sintered material diffuse across the boundaries of the particles, fusing the particles together and creating a solid piece.

<span class="mw-page-title-main">Slag</span> By-product of smelting ores and used metals

Slag is a by-product of smelting (pyrometallurgical) ores and recycled metals. Slag is mainly a mixture of metal oxides and silicon dioxide. Broadly, it can be classified as ferrous, ferroalloy or non-ferrous/base metals. Within these general categories, slags can be further categorized by their precursor and processing conditions.

<span class="mw-page-title-main">Fatigue (material)</span> Initiation and propagation of cracks in a material due to cyclic loading

In materials science, fatigue is the initiation and propagation of cracks in a material due to cyclic loading. Once a fatigue crack has initiated, it grows a small amount with each loading cycle, typically producing striations on some parts of the fracture surface. The crack will continue to grow until it reaches a critical size, which occurs when the stress intensity factor of the crack exceeds the fracture toughness of the material, producing rapid propagation and typically complete fracture of the structure.

<span class="mw-page-title-main">Powder metallurgy</span> Process of sintering metal powders

Powder metallurgy (PM) is a term covering a wide range of ways in which materials or components are made from metal powders. PM processes can reduce or eliminate the need for subtractive processes in manufacturing, lowering material losses and reducing the cost of the final product.

<span class="mw-page-title-main">Hot isostatic pressing</span>

Hot isostatic pressing (HIP) is a manufacturing process, used to reduce the porosity of metals and increase the density of many ceramic materials. This improves the material's mechanical properties and workability.

<span class="mw-page-title-main">Institute of Materials, Minerals and Mining</span> UK engineering institution

The Institute of Materials, Minerals and Mining (IOM3) is a UK engineering institution whose activities encompass the whole materials cycle, from exploration and extraction, through characterisation, processing, forming, finishing and application, to product recycling and land reuse. It exists to promote and develop all aspects of materials science and engineering, geology, mining and associated technologies, mineral and petroleum engineering and extraction metallurgy, as a leading authority in the worldwide materials and mining community.

6061 aluminium alloy is a precipitation-hardened aluminium alloy, containing magnesium and silicon as its major alloying elements. Originally called "Alloy 61S", it was developed in 1935. It has good mechanical properties, exhibits good weldability, and is very commonly extruded. It is one of the most common alloys of aluminium for general-purpose use.

CSA was a division of Cambridge Information Group and provider of online databases, based in Bethesda, Maryland, before merging with ProQuest of Ann Arbor, Michigan, in 2007. CSA hosted databases of abstracts and developed taxonomic indexing of scholarly articles. These databases were hosted on the CSA Illumina platform and were available alongside add-on products like CSA Illustrata. The company produced numerous bibliographic databases in different fields of the arts and humanities, natural and social sciences, and technology. Thus, coverage included materials science, environmental sciences and pollution management, biological sciences, aquatic sciences and fisheries, biotechnology, engineering, computer science, sociology, linguistics, and other areas.

Defence Metallurgical Research Laboratory (DMRL) is a research laboratory of the Defence Research and Development Organisation (DRDO). Located in Defence Research Complex, Kanchanbagh, Hyderabad. It is responsible for the development and manufacture of complex metals and materials required for modern warfare and weapon systems.

A crystallographic database is a database specifically designed to store information about the structure of molecules and crystals. Crystals are solids having, in all three dimensions of space, a regularly repeating arrangement of atoms, ions, or molecules. They are characterized by symmetry, morphology, and directionally dependent physical properties. A crystal structure describes the arrangement of atoms, ions, or molecules in a crystal.

AlBeMet is the trade name for a beryllium and aluminium metal matrix composite material derived by a powder metallurgy process. AlBeMet AM162 is manufactured by Materion Corporation Brush Beryllium and Composites.

TRIP steel are a class of high-strength steel alloys typically used in naval and marine applications and in the automotive industry. TRIP stands for "Transformation induced plasticity," which implies a phase transformation in the material, typically when a stress is applied. These alloys are known to possess an outstanding combination of strength and ductility.

<span class="mw-page-title-main">Graduate Institute of Ferrous Technology</span>

The Graduate Institute of Ferrous Technology is an institute for graduate-level education and research in the field of iron and steel technology at Pohang University of Science and Technology, South Korea. It has nine specialized laboratories covering all sides of metallurgy. However, the Institute now has a reduced focus on steels, having introduced laboratories on battery electronics,.

Ti-6Al-4V, also sometimes called TC4, Ti64, or ASTM Grade 5, is an alpha-beta titanium alloy with a high specific strength and excellent corrosion resistance. It is one of the most commonly used titanium alloys and is applied in a wide range of applications where low density and excellent corrosion resistance are necessary such as e.g. aerospace industry and biomechanical applications.

Palle Rama Rao FREng is an Indian scientist noted for his contribution to the field of Physical and Mechanical Metallurgy. He has collaborated and conducted research activities for over dozen universities and associations all over India and abroad. He has been honoured with the titles of Padma Vibhushan in 2011 by president of India for his contributions to scientific community. He is acting as the chairman, Governing Council, International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI), Hyderabad.

Low cycle fatigue (LCF) has two fundamental characteristics: plastic deformation in each cycle; and low cycle phenomenon, in which the materials have finite endurance for this type of load. The term cycle refers to repeated applications of stress that lead to eventual fatigue and failure; low-cycle pertains to a long period between applications.

Design for additive manufacturing is design for manufacturability as applied to additive manufacturing (AM). It is a general type of design methods or tools whereby functional performance and/or other key product life-cycle considerations such as manufacturability, reliability, and cost can be optimized subjected to the capabilities of additive manufacturing technologies.

<span class="mw-page-title-main">Günter Petzow</span>

Günter Petzow is a German materials scientist and former director at the Max Planck Institute for Metals Research.

Christopher L. Magee is an American mechanical engineer, academic and researcher. He is Professor of the practice Emeritus in Mechanical Engineering Department and Institute for Data, Systems and Society at Massachusetts Institute of Technology. He co-directs the International Design Center of SUTD/MIT.

References