Lateral force variation

Last updated

Tires provide for steering, traction, braking, and load support by transmitting forces between the vehicle and the road. Lateral force variation (LFV) is a property of a tire that characterizes its dynamic behavior of these forces. High values of LFV for a given tire reflect a high level of manufacturing variations in the tire structure that will impart ride disturbances into the vehicle in the lateral, or steering, direction. LFV is measured according to processes specified by the ASTM International in ASTM F1806 – Standard Practice for Tire Testing.

Contents

Force variation axes Tire Force Variation1.jpg
Force variation axes

LFV can best be explained by example. Assume a perfectly uniform tire mounted on a perfectly round wheel loaded with a constant force against a perfectly round test wheel. As the wheel turns, it turns the tire, and the tire carcass undergoes repeated deformation and recovery as it enters and exits the contact area. If we measure the lateral force between the tire and the wheel we will see zero change as the tire turns. If we now test a typical production tire we will see the lateral force vary as the tire turns.

Consider a good tire with LFV of 4 pounds. This tire will induce a 4 pound force sideways into the vehicle every rotation. The frequency of the force will increase in direct proportion to rotating speed. This effect will influence the steering of the vehicle. Tire makers test tires at the point of manufacture to verify that the LFV is within allowable quality limits. Tires that exceed these limits may be scrapped or sold to markets that do not require stringent quality.

Waveform analysis

LFV is a complex waveform. It is expressed using several standard methods, including peak-to-peak, first harmonic, second harmonic, and higher-order harmonics. In production LFV testing these are reported as both magnitudes and angles.

See also

Related Research Articles

Tire Ring-shaped covering that fits around a wheels rim

A tire or tyre is a ring-shaped component that surrounds a wheel's rim to transfer a vehicle's load from the axle through the wheel to the ground and to provide traction on the surface over which the wheel travels. Most tires, such as those for automobiles and bicycles, are pneumatically inflated structures, which also provide a flexible cushion that absorbs shock as the tire rolls over rough features on the surface. Tires provide a footprint, called a contact patch, that is designed to match the weight of the vehicle with the bearing strength of the surface that it rolls over by providing a bearing pressure that will not deform the surface excessively.

Car suspension

Suspension is the system of tires, tire air, springs, shock absorbers and linkages that connects a vehicle to its wheels and allows relative motion between the two. Suspension systems must support both road holding/handling and ride quality, which are at odds with each other. The tuning of suspensions involves finding the right compromise. It is important for the suspension to keep the road wheel in contact with the road surface as much as possible, because all the road or ground forces acting on the vehicle do so through the contact patches of the tires. The suspension also protects the vehicle itself and any cargo or luggage from damage and wear. The design of front and rear suspension of a car may be different.

Speedometer Speed gauge in motor vehicles

A speedometer or speed meter is a gauge that measures and displays the instantaneous speed of a vehicle. Now universally fitted to motor vehicles, they started to be available as options in the early 20th century, and as standard equipment from about 1910 onwards. Speedometers for other vehicles have specific names and use other means of sensing speed. For a boat, this is a pit log. For an aircraft, this is an airspeed indicator.

Slip angle

In vehicle dynamics, slip angle or sideslip angle is the angle between the direction in which a wheel is pointing and the direction in which it is actually traveling. This slip angle results in a force, the cornering force, which is in the plane of the contact patch and perpendicular to the intersection of the contact patch and the midplane of the wheel. This cornering force increases approximately linearly for the first few degrees of slip angle, then increases non-linearly to a maximum before beginning to decrease.

Understeer and oversteer Vehicle dynamics terms

Understeer and oversteer are vehicle dynamics terms used to describe the sensitivity of a vehicle to steering. Oversteer is what occurs when a car turns (steers) by more than the amount commanded by the driver. Conversely, understeer is what occurs when a car steers less than the amount commanded by the driver.

Automobile handling and vehicle handling are descriptions of the way a wheeled vehicle responds and reacts to the inputs of a driver, as well as how it moves along a track or road. It is commonly judged by how a vehicle performs particularly during cornering, acceleration, and braking as well as on the vehicle's directional stability when moving in steady state condition.

Aquaplaning

Aquaplaning or hydroplaning by the tires of a road vehicle, aircraft or other wheeled vehicle occurs when a layer of water builds between the wheels of the vehicle and the road surface, leading to a loss of traction that prevents the vehicle from responding to control inputs. If it occurs to all wheels simultaneously, the vehicle becomes, in effect, an uncontrolled sled. Aquaplaning is a different phenomenon from when water on the surface of the roadway merely acts as a lubricant. Traction is diminished on wet pavement even when aquaplaning is not occurring.

Weight transfer

Weight transfer and load transfer are two expressions used somewhat confusingly to describe two distinct effects:

Paddle tire

Paddle tires are mainly used on off road vehicles, specifically designed for use in sand and mud. They consist of a smooth tire core which has a series of large rubber cups attached to it. The volume inside of a paddle is much larger than the void of a knobby tire, so it is unlikely to clog up with sand/mud. A street legal mud tire is a more or less normal tire, but with extra large gaps or "voids" between each tread block to allow centrifugal force to "self-clean" or fling the mud out of the gap. Smaller gaps trap the mud in between the tire lugs, which turns the tire into something resembling a "slick" with no tread at all, which will have no traction in mud.

Rolling resistance

Rolling resistance, sometimes called rolling friction or rolling drag, is the force resisting the motion when a body rolls on a surface. It is mainly caused by non-elastic effects; that is, not all the energy needed for deformation of the wheel, roadbed, etc., is recovered when the pressure is removed. Two forms of this are hysteresis losses, and permanent (plastic) deformation of the object or the surface. Another cause of rolling resistance lies in the slippage between the wheel and the surface, which dissipates energy. Note that only the last of these effects involves friction, therefore the name "rolling friction" is to an extent a misnomer.

Beam axle

A beam axle, rigid axle or solid axle is a dependent suspension design, in which a set of wheels is connected laterally by a single beam or shaft. Beam axles were once commonly used at the rear wheels of a vehicle, but historically they have also been used as front axles in four-wheel-drive vehicles. In most automobiles, beam axles have been replaced with front and rear independent suspensions.

Trail braking Driving and motorcycle riding technique where the brakes are used

Trail braking is a driving and motorcycle riding technique where the brakes are used beyond the entrance to a turn (turn-in), and then gradually released. Depending on a number of factors, the driver fully releases brake pressure at any point between turn-in and the apex of the turn.

Uniform Tire Quality Grading standards for passenger car tires

Uniform Tire Quality Grading, commonly abbreviated as UTQG, is the term encompassing a set of standards for passenger car tires that measures a tire's treadwear, temperature resistance and traction. The UTQG was created by the National Highway Traffic Safety Administration in 1978, a branch of the United States Department of Transportation (DOT). All tires manufactured for sale in the United States since March 31, 1979 are federally mandated to have the UTQG ratings on their sidewall as part of the DOT approval process, in which non-DOT approved tires are not legal for street use in the United States. It is not to be confused with the tire code, a supplemental and global standard measuring tire dimensions, load-bearing ability and maximum speed, maintained by tire industry trade organizations and the International Organization for Standardization.

Radial force variation

Radial force variation or road force variation (RFV) is a property of a tire that affects steering, traction, braking and load support. High values of RFV for a given tire reflect a high level of manufacturing variations in the tire structure that will impart ride disturbances into the vehicle in the vertical direction. RFV is measured according to processes specified by the ASTM International in ASTM F1806 – Standard Practice for Tire Testing.

Lift-off oversteer is a form of oversteer in automobiles that occurs while cornering when closing the throttle causes a deceleration, causing the vertical load on the tires to shift from the rear to the front, in a process called Load transfer. This decrease in vertical load on the rear tires causes a decrease in the lateral force they generate, so that their lateral acceleration is also decreased. This causes the vehicle to steer more tightly into the turn, hence oversteering. In other words, easing off the accelerator can cause the rear tires to lose traction, with the potential for the car to leave the road tail first.

Bicycle and motorcycle dynamics The science of how bicycles and motorcycles move

Bicycle and motorcycle dynamics is the science of the motion of bicycles and motorcycles and their components, due to the forces acting on them. Dynamics falls under a branch of physics known as classical mechanics. Bike motions of interest include balancing, steering, braking, accelerating, suspension activation, and vibration. The study of these motions began in the late 19th century and continues today.

Snow tire

Snow tires, also known as winter tires, are tires designed for use on snow and ice. Snow tires have a tread design with larger gaps than those on conventional tires, increasing traction on snow and ice. Such tires that have passed a specific winter traction performance test are entitled to display a "Three-Peak Mountain Snow Flake" symbol on their sidewalls. Tires designed for winter conditions are optimized to drive at temperatures below 7 °C (45 °F). Some snow tires have metal or ceramic studs that protrude from the tire to increase traction on hard-packed snow or ice. Studs abrade dry pavement, causing dust and creating wear in the wheel path. Regulations that require the use of snow tires or permit the use of studs vary by country in Asia and Europe, and by state or province in North America.

Tire Uniformity refers to the dynamic mechanical properties of pneumatic tires as strictly defined by a set of measurement standards and test conditions accepted by global tire and car makers.

Tire balance

Tire balance, also called tire unbalance or tire imbalance, describes the distribution of mass within an automobile tire or the entire wheel on which it is mounted.

Outline of tires Overview of and topical guide to tires

The following outline is provided as an overview of and topical guide to tires: