Look-down/shoot-down

Last updated

A radar system has look-down/shoot-down capability if it can detect, track and guide a weapon to an air target that (as seen by the radar) is silhouetted against the ground.

Contents

Problem and naming

Airborne intercept radar relying exclusively on time domain radar techniques is effectively blind any time the radar's antenna is aimed towards the Earth's surface. That is because pointing the radar at the ground produces a large reflection. That reflection and the ensuing "cluttered" display overwhelms human operators and computing systems (see ground clutter [1] ). Radar systems of this type are essentially useless when pointed ‘down’ at the surface, with the zone of weakness near and below the horizon. This zone can be actively utilized by enemy combatants wishing to hide from radar tracking.

Frequency domain signal processing combined with time domain signal processing, as in pulse-Doppler radar, is a way to eliminate that vulnerability.

Look down

Militaries require performance of airborne intercept radar under all aspects, including downwards. By using techniques to effectively remove clutter, human operators and computers can focus on targets of interest. This allows the radar system to "look down", and that eliminates the zone of weakness. Military air combat vehicles that lack this capability are blind to targets below and along the line of the horizon and therefore unable to engage or attack them. [2]

Shoot down

Once the radar can "look down", it is subsequently desirable to "shoot down". Various weapons systems (including guns and missiles) are then employed against designated radar targets, either relying on the aircraft's radar employing the "look down" capability (as in semi-active radar homing) or the weapon's own active radar to resolve the indicated target (as in active radar homing).

Concept

The technical challenge encountered by airborne radar is discerning relatively small radar returns (e.g. other aircraft, targets) in the presence of large radar returns (e.g. terrain return) when the radar is pointed at the ground, "looking down". The ground strongly reflects the radar energy while the target relatively weakly reflects the radar energy, creating confusing clutter on the radar screen. It is difficult or impossible to separate the radar image of low-flying aircraft from the surrounding ground clutter.

Look-down/shoot-down radars have been enhanced with electronic programs that process the radar image and search for moving objects, which are detected by looking for Doppler shifts in the radar return. See moving target indication. The radar removes all stationary objects (e.g. the ground and buildings) from the display and shows only moving objects. Since the radar is linked to the aircraft's fire control system, it can provide targeting information to weapons once it has detected a moving object.

Look-down/shoot-down radars provide combat aircraft with the ability to engage targets flying below them. This is highly desirable, as it allows an aircraft to detect and attack targets whilst maintaining the tactically advantageous position conferred by superior altitude.

History

The Hughes AN/ASG-18 fire control system was a prototype airborne radar/combination system for the planned North American XF-108 Rapier interceptor aircraft for the United States Air Force, and later for the Lockheed YF-12. The US's first pulse-Doppler radar, the system had look-down/shoot-down capability and could track one target at a time. Flight tests of the AN/ASG-18 system, using a modified Convair B-58, began in 1960. [3] During the 1960s, YF-12 flight tests were conducted, which included the use of the YF-12's onboard AN/ASG-18 radar system in conjunction with AIM-47 missiles to shoot down target drones.

A look-down/shoot-down airborne radar was developed by ELTA Ltd, a subsidiary of Israel Aircraft Industry (IAI) in response to an Israeli Air-Force operational requirement, resulting from lessons learned during the Six Day War in 1967. ELTA pioneered and proved the feasibility of installing a light-weight Coherent Pulse-Doppler radar in a fighter aircraft. First prototype was successfully tested in 1970. The radar (ELM-2001) was installed on the Israeli "Kfir" fighter and went operational in 1974.

Practical pulse-Doppler signal processing requires high-power light-weight solid state computing that became available in the early 1970s. The first aircraft to rely completely on its own radar system is the F-4 Phantom. [4] The F-4J had the Westinghouse AN/AWG-10 fire control system (making the F-4J the first fighter in the world with operational look-down/shoot-down capability). [5]

The Soviet Union introduced its first look-down/shoot-down radar with the Sapfir-23P on the Mikoyan MiG-23 interceptor. This made it harder for U.S. Air Force bombers and cruise missiles to penetrate the Soviet airspace at low altitude (terrain masking), without being detected.

When speaking of coalition air operations during the 1991 Persian Gulf War, General Charles Horner described the F-15's look down/shoot down radar , "During the first three days of the war, when control of the air was greatly contested, what it basically amounted to was the Iraqi aircraft would take off, pull up their landing gear, and blow up." [6]

Related Research Articles

<span class="mw-page-title-main">AIM-54 Phoenix</span> American long range BVR air-to-air missile

The AIM-54 Phoenix is an American radar-guided, long-range air-to-air missile (AAM), carried in clusters of up to six missiles on the Grumman F-14 Tomcat, its only operational launch platform.

<span class="mw-page-title-main">Radar</span> Object detection system using radio waves

Radar is a system that uses radio waves to determine the distance (ranging), direction, and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track aircraft, ships, spacecraft, guided missiles, motor vehicles, map weather formations, and terrain.

<span class="mw-page-title-main">Doppler radar</span> Type of radar equipment

A Doppler radar is a specialized radar that uses the Doppler effect to produce velocity data about objects at a distance. It does this by bouncing a microwave signal off a desired target and analyzing how the object's motion has altered the frequency of the returned signal. This variation gives direct and highly accurate measurements of the radial component of a target's velocity relative to the radar. The term applies to radar systems in many domains like aviation, police radar detectors, navigation, meteorology, etc.

<span class="mw-page-title-main">North American XF-108 Rapier</span> Canceled interceptor aircraft project

The North American XF-108 Rapier was a proposed long-range, high-speed interceptor aircraft designed by North American Aviation intended to defend the United States from supersonic Soviet strategic bombers. The aircraft would have cruised at speeds around Mach 3 with an unrefueled combat radius over 1,000 nautical miles, and was equipped with radar and missiles offering engagement ranges up to 100 miles (160 km) against bomber-sized targets.

<span class="mw-page-title-main">Pulse-Doppler radar</span> Type of radar system

A pulse-Doppler radar is a radar system that determines the range to a target using pulse-timing techniques, and uses the Doppler effect of the returned signal to determine the target object's velocity. It combines the features of pulse radars and continuous-wave radars, which were formerly separate due to the complexity of the electronics.

Radar jamming and deception is a form of electronic countermeasures that intentionally sends out radio frequency signals to interfere with the operation of radar by saturating its receiver with noise or false information. Concepts that blanket the radar with signals so its display cannot be read are normally known as jamming, while systems that produce confusing or contradictory signals are known as deception, but it is also common for all such systems to be referred to as jamming.

Northrop Grumman Electronic Systems (NGES) was a business segment of Northrop Grumman from 1996 to 2015 until a reorganization on January 1, 2016 merged other Northrop Grumman businesses into NGES to form a new segment called Mission Systems. NGES had originally been created by Northrop Grumman's acquisition of Westinghouse Electronic Systems Group in 1996. The Electronic Systems sector was a designer, developer, and manufacturer of a wide variety of advanced defense electronics and systems. The division had 120 locations worldwide, including 72 international offices, and approximately 24,000 employees; accounting for 20% of company sales in 2005.

<span class="mw-page-title-main">AN/APG-63 radar family</span> American all-weather multimode radar family

The AN/APG-63 and AN/APG-70 are a family of all-weather multimode radar systems designed by Hughes Aircraft for the F-15 Eagle air superiority fighter. These X band pulse-Doppler radar systems are designed for both air-air and air-ground missions; they are able to look up at high-flying targets and down at low-flying targets without being confused by ground clutter. The systems can detect and track aircraft and small high-speed targets at distances beyond visual range down to close range, and at altitudes down to treetop level. The radar feeds target information into the aircraft's central computer for effective weapons delivery. For close-in dogfights, the radar automatically acquires enemy aircraft and projects this information onto the cockpit head-up display. The name is assigned from the Army Navy Joint Electronics Type Designation System.

The AN/APG-65 and AN/APG-73 are designations for a family of all-weather multimode airborne radar systems designed by Hughes Aircraft for the F/A-18 Hornet, and used on a variety of fighter aircraft types. The APG-79 is an upgraded AESA version.

The Hughes AN/ASG-18 Fire Control System was a prototype airborne fire control radar system for the planned North American XF-108 Rapier interceptor aircraft, and the Lockheed YF-12 for the United States Air Force. It was the US's first Pulse-Doppler radar, giving it look-down/shoot-down capability, and was also the first track while scan radar. This was paired with an infrared search and track (IRST) system. Range of the radar was estimated at between 200 and 300 miles, with reliable detection of bomber-sized targets at 100 miles (160 km). The installation itself was massive, weighing 2,100 lb (953 kg), and taking up most of the nose of the aircraft. The system was to be used with the Hughes AIM-47 Falcon missile, which also had a range of about 100 miles.

<span class="mw-page-title-main">AN/AWG-9</span> X band pulse-Doppler military aircraft radar

The AN/AWG-9 and AN/APG-71 radars are all-weather, multi-mode X band pulse-Doppler radar systems used in the F-14 Tomcat, and also tested on TA-3B. It is a long-range air-to-air system capable of guiding several AIM-54 Phoenix or AIM-120 AMRAAM missiles simultaneously, using its track while scan mode. The AWG-9 utilizes an analog computer while the APG-71 is an upgraded variant utilizing a digital computer. Both the AWG-9 and APG-71 were designed and manufactured by Hughes Aircraft Company's Radar Systems Group in Los Angeles; contractor support was later assumed by Raytheon. The AWG-9 was originally created for the canceled Navy F-111B program.

Radar MASINT is a subdiscipline of measurement and signature intelligence (MASINT) and refers to intelligence gathering activities that bring together disparate elements that do not fit within the definitions of signals intelligence (SIGINT), imagery intelligence (IMINT), or human intelligence (HUMINT).

<span class="mw-page-title-main">Zaslon</span> Russian airborne radar

The Russian BRLS-8B "Zaslon" (Barrier) is an all-weather multimode airborne radar developed between 1975 and 1980 by the Tikhomirov Scientific Research Institute of Instrument Design as part of the weapons control system of the MiG-31 supersonic interceptor. The NATO reporting name for the radar is Flash Dance with the designations "SBI-16", "RP-31", "N007" and "S-800" also being associated with the radar.

<span class="mw-page-title-main">Irbis-E</span> Russian fighter jet radar

Irbis-E is a Russian multi-mode, hybrid passive electronically scanned array radar system developed by Tikhomirov NIIP for the Sukhoi Su-35 multi-purpose fighter aircraft. NIIP developed the Irbis-E radar from the N011M Bars radar system used on Sukhoi Su-30MKI aircraft.

<span class="mw-page-title-main">AN/APQ-120</span> Aircraft fire control radar

The AN/APQ-120 was an aircraft fire control radar (FCR) manufactured by Westinghouse for the McDonnell Douglas F-4E Phantom II. AN/APQ-120 has a long line of lineage, with its origin traced all the way back to Aero-13 FCR developed by the same company in the early 1950s. A total of half a dozen FCRs were tested and evaluated on the first 18 F-4s built, but they were soon replaced by later radars produced in great numbers, including AN/APQ-120.

The Grifo radar is a family of airborne radars developed by Italian firm Leonardo S.p.A. for fighter aircraft and attack aircraft, and this family of radars includes several series.

The RP-23 Sapfir was a Soviet look-down/shoot-down radar system. It was developed by Phazotron specifically for the Soviet Air Forces (VVS) new MiG-23 fighter aircraft and used in conjunction with the Vympel R-23 beyond visual range air-to-air missile.

References

  1. Eden, Paul, ed. (2004). The Encyclopedia of Modern Military Aircraft. London: Amber Books. ISBN   1-904687-84-9.
  2. "Radar Systems Engineering Lecture 14 Airborne Pulse Doppler Radar" (PDF). IEEE New Hampshire Section; University of New Hampshire.
  3. "B-52s in the Desert".
  4. "The McDonnell F-4 Phantom II". The Aviation History Online Museum.
  5. "AWG-10 Radar, Antenna Control, Type C-8778/APG-59". Archived from the original on December 8, 2015.
  6. Wings Over The Persian Gulf. F-15. The Discovery Channel.