Network allocation vector

Last updated

The network allocation vector (NAV) is a virtual carrier-sensing mechanism used with wireless network protocols such as IEEE 802.11 (Wi-Fi) and IEEE 802.16 (WiMax). The virtual carrier-sensing is a logical abstraction which limits the need for physical carrier-sensing at the air interface in order to save power. The MAC layer frame headers contain a duration field that specifies the transmission time required for the frame, in which time the medium will be busy. The stations listening on the wireless medium read the Duration field and set their NAV, which is an indicator for a station on how long it must defer from accessing the medium.

The NAV may be thought of as a counter, which counts down to zero at a uniform rate. When the counter is zero, the virtual carrier-sensing indication is that the medium is idle; when nonzero, the indication is busy. The medium shall be determined to be busy when the station (STA) is transmitting. In IEEE 802.11, the NAV represents the number of microseconds the sending STA intends to hold the medium busy (maximum of 32,767 microseconds). When the sender sends a Request to Send the receiver waits one SIFS before sending Clear to Send. Then the sender will wait again one SIFS before sending all the data. Again the receiver will wait a SIFS before sending ACK. So NAV is the duration from the first SIFS to the ending of ACK. During this time the medium is considered busy.

Wireless stations are often battery-powered, so to conserve power the stations may enter a power-saving mode. A station decrements its NAV counter until it becomes zero, at which time it is awakened to sense the medium again.

The NAV virtual carrier sensing mechanism is a prominent part of the CSMA/CA MAC protocol used with IEEE 802.11 WLANs. NAV is used in DCF, PCF and HCF.

Related Research Articles

<span class="mw-page-title-main">IEEE 802.11</span> Wireless network standard

IEEE 802.11 is part of the IEEE 802 set of local area network (LAN) technical standards, and specifies the set of medium access control (MAC) and physical layer (PHY) protocols for implementing wireless local area network (WLAN) computer communication. The standard and amendments provide the basis for wireless network products using the Wi-Fi brand and are the world's most widely used wireless computer networking standards. IEEE 802.11 is used in most home and office networks to allow laptops, printers, smartphones, and other devices to communicate with each other and access the Internet without connecting wires. IEEE 802.11 is also a basis for vehicle-based communication networks with IEEE 802.11p.

<span class="mw-page-title-main">Carrier-sense multiple access with collision avoidance</span> Computer network multiple access method

Carrier-sense multiple access with collision avoidance (CSMA/CA) in computer networking, is a network multiple access method in which carrier sensing is used, but nodes attempt to avoid collisions by beginning transmission only after the channel is sensed to be "idle". When they do transmit, nodes transmit their packet data in its entirety.

Carrier-sense multiple access with collision detection (CSMA/CD) is a medium access control (MAC) method used most notably in early Ethernet technology for local area networking. It uses carrier-sensing to defer transmissions until no other stations are transmitting. This is used in combination with collision detection in which a transmitting station detects collisions by sensing transmissions from other stations while it is transmitting a frame. When this collision condition is detected, the station stops transmitting that frame, transmits a jam signal, and then waits for a random time interval before trying to resend the frame.

Carrier-sense multiple access (CSMA) is a medium access control (MAC) protocol in which a node verifies the absence of other traffic before transmitting on a shared transmission medium, such as an electrical bus or a band of the electromagnetic spectrum.

IEEE 802.11e-2005 or 802.11e is an approved amendment to the IEEE 802.11 standard that defines a set of quality of service (QoS) enhancements for wireless LAN applications through modifications to the media access control (MAC) layer. The standard is considered of critical importance for delay-sensitive applications, such as Voice over Wireless LAN and streaming multimedia. The amendment has been incorporated into the published IEEE 802.11-2007 standard.

Distributed coordination function (DCF) is the fundamental medium access control (MAC) technique of the IEEE 802.11-based WLAN standard. DCF employs a carrier-sense multiple access with collision avoidance (CSMA/CA) with the binary exponential backoff algorithm.

<span class="mw-page-title-main">Hidden node problem</span> Problem in wireless networking

In wireless networking, the hidden node problem or hidden terminal problem occurs when a node can communicate with a wireless access point (AP), but cannot directly communicate with other nodes that are communicating with that AP. This leads to difficulties in medium access control sublayer since multiple nodes can send data packets to the AP simultaneously, which creates interference at the AP resulting in no packet getting through.

RTS/CTS is the optional mechanism used by the 802.11 wireless networking protocol to reduce frame collisions introduced by the hidden node problem. Originally the protocol fixed the exposed node problem as well, but modern RTS/CTS includes ACKs and does not solve the exposed node problem.

IEEE 802.11i-2004, or 802.11i for short, is an amendment to the original IEEE 802.11, implemented as Wi-Fi Protected Access II (WPA2). The draft standard was ratified on 24 June 2004. This standard specifies security mechanisms for wireless networks, replacing the short Authentication and privacy clause of the original standard with a detailed Security clause. In the process, the amendment deprecated broken Wired Equivalent Privacy (WEP), while it was later incorporated into the published IEEE 802.11-2007 standard.

<span class="mw-page-title-main">Exposed node problem</span>

In wireless networks, the exposed node problem occurs when a node is prevented from sending packets to other nodes because of co-channel interference with a neighboring transmitter. Consider an example of four nodes labeled R1, S1, S2, and R2, where the two receivers are out of range of each other, yet the two transmitters in the middle are in range of each other. Here, if a transmission between S1 and R1 is taking place, node S2 is prevented from transmitting to R2 as it concludes after carrier sense that it will interfere with the transmission by its neighbor S1. However note that R2 could still receive the transmission of S2 without interference because it is out of range of S1.

Point coordination function (PCF) is a media access control (MAC) technique used in IEEE 802.11 based WLANs, including Wi-Fi. It resides in a point coordinator also known as access point (AP), to coordinate the communication within the network. The AP waits for PIFS duration rather than DIFS duration to grasp the channel. PIFS is less than DIFS duration and hence the point coordinator always has the priority to access the channel.

IEEE 802.11w-2009 is an approved amendment to the IEEE 802.11 standard to increase the security of its management frames.

IEEE 802.11y-2008 is an amendment to the IEEE 802.11-2007 standard that enables data transfer equipment to operate using the 802.11a protocol on a co-primary basis in the 3650 to 3700 MHz band except when near a grandfathered satellite earth station. IEEE 802.11y is only being allowed as a licensed band. It was approved for publication by the IEEE on September 26, 2008.

Multiple Access with Collision Avoidance for Wireless (MACAW) is a slotted medium access control (MAC) protocol widely used in ad hoc networks. Furthermore, it is the foundation of many other MAC protocols used in wireless sensor networks (WSN). The IEEE 802.11 RTS/CTS mechanism is adopted from this protocol. It uses RTS-CTS-DS-DATA-ACK frame sequence for transferring data, sometimes preceded by an RTS-RRTS frame sequence, in view to provide solution to the hidden node problem. Although protocols based on MACAW, such as S-MAC, use carrier sense in addition to the RTS/CTS mechanism, MACAW does not make use of carrier sense.

The IEEE 802.11 family of standards describe the DCF protocol, which controls access to the physical medium. A station must sense the status of the wireless medium before transmitting. If it finds that the medium is continuously idle for DCF Interframe Space (DIFS) duration, it is then permitted to transmit a frame. If the channel is found busy during the DIFS interval, the station should defer its transmission.

Short Interframe Space (SIFS), is the amount of time in microseconds required for a wireless interface to process a received frame and to respond with a response frame. It is the difference in time between the first symbol of the response frame in the air and the last symbol of the received frame in the air. A SIFS time consists of the delay in receiver RF, PLCP delay and the MAC processing delay, which depends on the physical layer used. In IEEE 802.11 networks, SIFS is the interframe spacing prior to transmission of an acknowledgment, a Clear To Send (CTS) frame, a block ack frame that is an immediate response to either a block ack request frame or an A-MPDU, the second or subsequent MPDU of a fragment burst, a station responding to any polling a by point coordination function and during contention free periods of point coordination function.

In IEEE 802.11 (Wi-Fi) terminology, a station is a device that has the capability to use the 802.11 protocol. For example, a station may be a laptop, a desktop PC, PDA, access point or Wi-Fi phone. An STA may be fixed, mobile or portable. Generally, in wireless networking terminology, a station, a wireless client and a node are often used interchangeably, with no strict distinction existing between these terms. A station may also be referred to as a transmitter or receiver based on its transmission characteristics. IEEE 802.11-2007 formally defines station as: Any device that contains an IEEE 802.11-conformant media access control (MAC) and physical layer (PHY) interface to the wireless medium (WM).

There are several uses of the 2.4 GHz band. Interference may occur between devices operating at 2.4 GHz. This article details the different users of the 2.4 GHz band, how they cause interference to other users and how they are prone to interference from other users.

Traffic indication map (TIM) is a structure used in 802.11 wireless network management frames.

IEEE 802.11ah is a wireless networking protocol published in 2017 called Wi-Fi HaLow as an amendment of the IEEE 802.11-2007 wireless networking standard. It uses 900 MHz license-exempt bands to provide extended-range Wi-Fi networks, compared to conventional Wi-Fi networks operating in the 2.4 GHz and 5 GHz bands. It also benefits from lower energy consumption, allowing the creation of large groups of stations or sensors that cooperate to share signals, supporting the concept of the Internet of things (IoT). The protocol's low power consumption competes with Bluetooth, LoRa, and Zigbee, and has the added benefit of higher data rates and wider coverage range.