Nord-100

Last updated

The Nord-100 was a 16-bit minicomputer series made by Norsk Data, introduced in 1979. It shipped with the Sintran III operating system, and the architecture was based on, and backwards compatible with, the Nord-10 line.

Norsk Data

Norsk Data was a (mini-)computer manufacturer located in Oslo, Norway. Existing from 1967 to 1992, it had its most active period in the years from the early 1970s to the late 1980s. At the company's peak in 1987 it was the second largest company in Norway and employed over 4,500 people.

Sintran III was a real-time, multitasking, multi-user operating system used with Norsk Data computers from 1974. Unlike its predecessors Sintran I and II, it was entirely written by Norsk Data. Sintran III was written in NORD PL, intermediate language for Norsk Data computers.

Nord-10

Nord-10 was a medium-sized general-purpose 16-bit minicomputer designed for multilingual time-sharing applications and for real-time multi-program systems, produced by Norsk Data. It was introduced in 1973. The later follow up model, Nord-10/S, introduced in 1975, introduced CPU cache, paging, and other miscellaneous improvements.

Contents

The Nord-100 was originally named the Nord-10/M (M for Micro) as a bitsliced OEM processor. The board was laid out and finished and tested when they realized that the CPU was far faster than the Nord-10/S. The result was that all the marketing material for the new NORD-10/M was discarded, the board was rechristened the Nord-100, and extensively advertised as the successor of the Nord-10 line. Later, in an effort to internationalize their line, the machine was renamed ND-100.

Performance

Relative CPU performance
ND-100 ND-100/CE ND-110 ND-110/CX ND-120/CX ND-125/CX
Minimum number of microinstructions per instruction 3 [ citation needed ] 3 1 [ citation needed ] 1
Minimum microinstruction cycle time 150ns[ citation needed ] 150ns 100ns[ citation needed ] 100ns
Whetstone MWIPS 0.5[ citation needed ] 0.5 0.3 [ citation needed ] 0.3

CPU

The ND-100 line used a custom processor, and like the PDP-11 line, the CPU decided the name of the computer.

PDP-11 Series of 16-bit minicomputers

The PDP-11 is a series of 16-bit minicomputers sold by Digital Equipment Corporation (DEC) from 1970 into the 1990s, one of a succession of products in the PDP series. In total, around 600,000 PDP-11s of all models were sold, making it one of DEC's most successful product lines. The PDP-11 is considered by some experts to be the most popular minicomputer ever.

The ND-100 line was machine-instruction compatible with the Nord-10 line, except for some "extended instructions", all in supervisor mode, mostly used by the operating system. Like most processors of its time, the native bit grouping was octal, despite the 16-bit word length.

Octal positional notation

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three. For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.

The ND-100 series had a microcoded central processing unit, with downloadable microcode, and was considered a CISC processor.

A complex instruction set computer is a computer in which single instructions can execute several low-level operations or are capable of multi-step operations or addressing modes within single instructions. The term was retroactively coined in contrast to reduced instruction set computer (RISC) and has therefore become something of an umbrella term for everything that is not RISC, from large and complex mainframe computers to simplistic microcontrollers where memory load and store operations are not separated from arithmetic instructions. A modern RISC processor can therefore be much more complex than, say, a modern microcontroller using a CISC-labeled instruction set, especially in the complexity of its electronic circuits, but also in the number of instructions or the complexity of their encoding patterns. The only typical differentiating characteristic is that most RISC designs use uniform instruction length for almost all instructions, and employ strictly separate load/store-instructions.

ND-100

The ND-100 was implemented using medium-scale integration (MSI) logic and bit-slice processors.

The ND-100 was frequently sold together with a memory management card, the MMS. The combined power use of these boards was 90 watts. These boards would usually occupy slots 2 and 3, for the CPU and MMS, respectively. Slot 1 was reserved for the Tracer, a hardware debugger system.

Memory management unit hardware translating virtual addresses to physical address

A memory management unit (MMU), sometimes called paged memory management unit (PMMU), is a computer hardware unit having all memory references passed through itself, primarily performing the translation of virtual memory addresses to physical addresses.

ND-100/CE

The CE stood for Commercial Extended. The processor was upgraded by replacing the microcode PROM.

It added instruction for decimal arithmetic and conversion, stack instructions, segment-change instructions used by the OS, a block move, test-and-set, and a read-without-cache instruction.

ND-110

The ND-110 was an incremental improvement over the ND-100.

The ND-110 combined the Memory Management System and CPU, previously separate cards, on one board. The single CPU/MMS board was plugged into the memory management board slot, usually numbered 3. The power consumption was reduced from 90 watts to 60.

The ND-110 made extensive use of PALs and gate arrays - with "semi-custom" VLSI chips.

The ND-110 had three gate arrays:

In addition to the macro-instruction cache memory also found in the ND-100, the ND-110 had a unique implementation of cache memory on the micro-instruction level. The step known as mapping in the ND-100 was then avoided because the first micro-instruction word of a macro-instruction was written into the control store cache.

Unlike the ND-100 CPU, it handled synchronous interrupts as traps, similar to how it was handled by the ND-500.

The control store consisted of 4K x 4 bit 40ns SRAM chips. This meant that the control store was writable. It was loaded at power up and Master Clear from two 32Kx8 bit EPROMs.

The CPU clock and the bus arbitration network were implemented using 15ns PALs.

The main oscillator was a 39.3216 MHz crystal oscillator.

ND-110/CX

This was the ND-110 with the CX microcode PROM. The added instructions were the same as the /CE.

ND-120/CX

The ND-120 CPU was a complete reimplementation on an LSI chip (The so-called Delilah chip), and was originally intended to be sold as the ND-1000, to reflect the technology change, which paralleled the change from the ND-500 series to the ND-5000 (Codenamed Samson).

The Samson/Delilah naming scheme may reflect that around the time of the development of the ND-120, it was increasingly clear that the mixed 16/32-bit architecture was a bottleneck for the ND-500(0) architecture; Internal technical documentation used at Norsk Data for the Delilah chip has a drawing of a grinning woman with hair in her clenched fist.

Related Research Articles

Intel 8086 16-bit central processing unit

The 8086 is a 16-bit microprocessor chip designed by Intel between early 1976 and June 8, 1978, when it was released. The Intel 8088, released July 1, 1979, is a slightly modified chip with an external 8-bit data bus, and is notable as the processor used in the original IBM PC design, including the widespread version called IBM PC XT.

Intel 80386 32-bit microprocessor introduced by Intel in 1985

The Intel 80386, also known as i386 or just 386, is a 32-bit microprocessor introduced in 1985. The first versions had 275,000 transistors and were the CPU of many workstations and high-end personal computers of the time. As the original implementation of the 32-bit extension of the 80286 architecture, the 80386 instruction set, programming model, and binary encodings are still the common denominator for all 32-bit x86 processors, which is termed the i386-architecture, x86, or IA-32, depending on context.

Intel 80486 higher performance follow-up to the Intel 80386 microprocessor introduced in 1989

The Intel 80486, also known as the i486 or 486, is a higher performance follow-up to the Intel 80386 microprocessor. The 80486 was introduced in 1989 and was the first tightly pipelined x86 design as well as the first x86 chip to use more than a million transistors, due to a large on-chip cache and an integrated floating-point unit. It represents a fourth generation of binary compatible CPUs since the original 8086 of 1978.

Microcode is a computer hardware technique that imposes an interpreter between the CPU hardware and the programmer-visible instruction set architecture of the computer. As such, the microcode is a layer of hardware-level instructions that implement higher-level machine code instructions or internal state machine sequencing in many digital processing elements. Microcode is used in general-purpose central processing units, although in current desktop CPUs it is only a fallback path for cases that the faster hardwired control unit cannot handle.

Machine code set of instructions executed directly by a computers central processing unit (CPU)

Machine code is a computer program written in machine language instructions that can be executed directly by a computer's central processing unit (CPU). Each instruction causes the CPU to perform a very specific task, such as a load, a store, a jump, or an ALU operation on one or more units of data in CPU registers or memory.

StrongARM family of computer microprocessors

The StrongARM is a family of computer microprocessors developed by Digital Equipment Corporation and manufactured in the late 1990s which implemented the ARM v4 instruction set architecture. It was later sold to Intel in 1997, who continued to manufacture it before replacing it with the XScale in the early 2000s.

VAX Computer architecture, and a range of computers

VAX is a discontinued instruction set architecture (ISA) developed by Digital Equipment Corporation (DEC) in the mid-1970s. The VAX-11/780, introduced on October 25, 1977, was the first of a range of popular and influential computers implementing that architecture.

Transputer

The transputer is a series of pioneering microprocessors from the 1980s, featuring integrated memory and serial communication links, intended for parallel computing. They were designed and produced by Inmos, a semiconductor company based in Bristol, United Kingdom.

The Pentium Pro is a sixth-generation x86 microprocessor developed and manufactured by Intel introduced in November 1, 1995. It introduced the P6 microarchitecture and was originally intended to replace the original Pentium in a full range of applications. While the Pentium and Pentium MMX had 3.1 and 4.5 million transistors, respectively, the Pentium Pro contained 5.5 million transistors. Later, it was reduced to a more narrow role as a server and high-end desktop processor and was used in supercomputers like ASCI Red, the first computer to reach the teraFLOPS performance mark. The Pentium Pro was capable of both dual- and quad-processor configurations. It only came in one form factor, the relatively large rectangular Socket 8. The Pentium Pro was succeeded by the Pentium II Xeon in 1998.

Intel i960 RISC-based microprocessor design

Intel's i960 was a RISC-based microprocessor design that became popular during the early 1990s as an embedded microcontroller. It became a best-selling CPU in that segment, along with the competing AMD 29000. In spite of its success, Intel stopped marketing the i960 in the late 1990s, as a result of a settlement with DEC whereby Intel received the rights to produce the StrongARM CPU. The processor continues to be used for a few military applications.

The POWER1 is a multi-chip CPU developed and fabricated by IBM that implemented the POWER instruction set architecture (ISA). It was originally known as the RISC System/6000 CPU or, when in an abbreviated form, the RS/6000 CPU, before introduction of successors required the original name to be replaced with one that used the same naming scheme (POWERn) as its successors in order to differentiate it from the newer designs.

Microarchitecture the way a given instruction set architecture (ISA) is implemented on a processor

In computer engineering, microarchitecture, also called computer organization and sometimes abbreviated as µarch or uarch, is the way a given instruction set architecture (ISA) is implemented in a particular processor. A given ISA may be implemented with different microarchitectures; implementations may vary due to different goals of a given design or due to shifts in technology.

Clipper architecture 32-bit RISC-like computing architecture

The Clipper architecture is a 32-bit RISC-like instruction set architecture designed by Fairchild Semiconductor. The architecture never enjoyed much market success, and the only computer manufacturers to create major product lines using Clipper processors were Intergraph and High Level Hardware. The first processors using the Clipper architecture were designed and sold by Fairchild, but the division responsible for them was subsequently sold to Intergraph in 1987; Intergraph continued work on Clipper processors for use in its own systems.

The Orion was a series of 32-bit super-minicomputers designed and produced in the 1980s by High Level Hardware Limited (HLH), a company based in Oxford, UK. The company produced four versions of the machine:

The history of general-purpose CPUs is a continuation of the earlier history of computing hardware.

V-11

The V-11, code-named "Scorpio", is a miniprocessor chip set implementation of the VAX instruction set architecture (ISA) developed and fabricated by Digital Equipment Corporation (DEC).

This is a glossary of terms relating to computer hardware – physical computer hardware, architectural issues, and peripherals.

MikroSim

MikroSim is an educational software computer program for hardware-non-specific explanation of the general functioning and behaviour of a virtual processor, running on the Microsoft Windows operating system. Devices like miniaturized calculators, microcontroller, microprocessors, and computer can be explained on custom-developed instruction code on a register transfer level controlled by sequences of micro instructions (microcode). Based on this it is possible to develop an instruction set to control a virtual application board at higher level of abstraction.

Intel microcode is microcode that runs inside x86 processors made by Intel. Since the P6 microarchitecture introduced in the mid-1990s, the microcode programs can be patched by the operating system or BIOS firmware to workaround bugs found in the CPU after release. Intel had originally designed microcode updates for processor debugging under its design for testing (DFT) initiative.