Solar flare (disambiguation)

Last updated

A solar flare is an intense emission of electromagnetic radiation from the Sun.

Contents

Solar flare, solar flares, or Sun flare may also refer to:

Arts, entertainment, and media

Television

Musical works

Other uses

See also

Related Research Articles

<span class="mw-page-title-main">Stellar corona</span> Outermost layer of a stars atmosphere

A corona is the outermost layer of a star's atmosphere. It consists of plasma.

<span class="mw-page-title-main">Solar flare</span> Eruption of electromagnetic radiation

A solar flare is a relatively intense, localized emission of electromagnetic radiation in the Sun's atmosphere. Flares occur in active regions and are often, but not always, accompanied by coronal mass ejections, solar particle events, and other eruptive solar phenomena. The occurrence of solar flares varies with the 11-year solar cycle.

A solar storm is a disturbance on the Sun, which can emanate outward across the heliosphere, affecting the entire Solar System, including Earth and its magnetosphere, and is the cause of space weather in the short-term with long-term patterns comprising space climate.

<span class="mw-page-title-main">Satellite flare</span> Visual phenomenon caused by satellites

Satellite flare, also known as satellite glint, is a satellite pass visible to the naked eye as a brief, bright "flare". It is caused by the reflection toward the Earth below of sunlight incident on satellite surfaces such as solar panels and antennas. Streaks from satellite flare are a form of light pollution that can negatively affect ground-based astronomy, stargazing, and indigenous people.

<span class="mw-page-title-main">Reuven Ramaty High Energy Solar Spectroscopic Imager</span> NASA satellite of the Explorer program

Reuven Ramaty High Energy Solar Spectroscopic Imager was a NASA solar flare observatory. It was the sixth mission in the Small Explorer program (SMEX), selected in October 1997 and launched on 5 February 2002, at 20:58:12 UTC. Its primary mission was to explore the physics of particle acceleration and energy release in solar flares.

<span class="mw-page-title-main">Flare star</span> Variable stars that brighten unpredictably

A flare star is a variable star that can undergo unpredictable dramatic increases in brightness for a few minutes. It is believed that the flares on flare stars are analogous to solar flares in that they are due to the magnetic energy stored in the stars' atmospheres. The brightness increase is across the spectrum, from X-rays to radio waves. Flare activity among late-type stars was first reported by A. van Maanen in 1945, for WX Ursae Majoris and YZ Canis Minoris. However, the best-known flare star is UV Ceti, first observed to flare in 1948. Today similar flare stars are classified as UV Ceti type variable stars in variable star catalogs such as the General Catalogue of Variable Stars.

A flare is a device that produces brilliant light and intense heat without explosion, used for lighting, signaling, decoration or as aerial defense countermeasure

<span class="mw-page-title-main">Flare (acrobatic move)</span>

The flare is an acrobatic move in which the performer alternates balancing the torso between either arm while swinging the legs beneath in continuous circles. It is a fundamental b-boying/bgirl power move, and in gymnastics it may be performed on a pommel horse or during the floor exercise. The move is commonly spelled flair in gymnastics and further may be called a "Thomas flair" after its originator, Kurt Thomas.

<span class="mw-page-title-main">Moreton wave</span> Large-scale chromospheric perturbation

A Moreton wave, Solar Tsunami, or Moreton-Ramsey wave is the chromospheric signature of a large-scale solar corona shock wave. Described as a kind of solar "tsunami", they are generated by solar flares. They are named for American astronomer Gail Moreton, an observer at the Lockheed Solar Observatory in Burbank, and Harry E. Ramsey, an observer who spotted them in 1959 at The Sacramento Peak Observatory. He discovered them in time-lapse photography of the chromosphere in the light of the Balmer alpha transition.

<span class="mw-page-title-main">Solar cycle 24</span> Solar activity from December 2008 to December 2019

Solar cycle 24 is the most recently completed solar cycle, the 24th since 1755, when extensive recording of solar sunspot activity began. It began in December 2008 with a minimum smoothed sunspot number of 2.2, and ended in December 2019. Activity was minimal until early 2010. It reached its maximum in April 2014 with a 23 months smoothed sunspot number of 81.8. This maximum value was substantially lower than other recent solar cycles, down to a level which had not been seen since cycles 12 to 15 (1878-1923).

Superflares are very strong explosions observed on stars with energies up to ten thousand times that of typical solar flares. The stars in this class satisfy conditions which should make them solar analogues, and would be expected to be stable over very long time scales. The original nine candidates were detected by a variety of methods. No systematic study was possible until the launch of the Kepler space telescope, which monitored a very large number of solar-type stars with very high accuracy for an extended period. This showed that a small proportion of stars had violent outbursts, up to 10,000 times as powerful as the strongest flares known on the Sun. In many cases there were multiple events on the same star. Younger stars were more likely to flare than old ones, but strong events were seen on stars as old as the Sun.

The Arctowski Medal is awarded by the U.S. National Academy of Sciences "for studies in solar physics and solar-terrestrial relationships." Named in honor of Henryk Arctowski, it was first awarded in 1969.

<span class="mw-page-title-main">Solar cycle 23</span> Solar activity from August 1996 to December 2008

Solar cycle 23 was the 23rd solar cycle since 1755, when extensive recording of solar sunspot activity began. The solar cycle lasted 12.3 years, beginning in August 1996 and ending in December 2008. The maximum smoothed sunspot number observed during the solar cycle was 180.3, and the starting minimum was 11.2. During the minimum transit from solar cycle 23 to 24, there were a total of 817 days with no sunspots. Compared to the last several solar cycles, it was fairly average in terms of activity.

Hinotori, also known as ASTRO-A before launch, was a Japanese X-ray astronomy satellite. It was developed by the Institute of Space and Astronautical Science (ISAS). Its primary mission was to study of solar flares emanating from the Sun during the solar maximum. It was launched successfully on February 21, 1981 using a M-3S rocket as the vehicle from Uchinoura Space Center. After the start of normal operation, it observed a large solar flare and, a month later, succeeded in observing 41 flares of many sizes from the Sun. It reentered the atmosphere on July 11, 1991. The name Hinotori is the Japanese word for Phoenix.

<span class="mw-page-title-main">Solar phenomena</span> Natural phenomena within the Suns atmosphere

Solar phenomena are natural phenomena which occur within the atmosphere of the Sun. They take many forms, including solar wind, radio wave flux, solar flares, coronal mass ejections, coronal heating and sunspots.

<span class="mw-page-title-main">Supra-arcade downflows</span> Sunward-traveling plasma voids observed in the Suns outer atmosphere

Supra-arcade downflows (SADs) are sunward-traveling plasma voids that are sometimes observed in the Sun's outer atmosphere, or corona, during solar flares. In solar physics, arcade refers to a bundle of coronal loops, and the prefix supra indicates that the downflows appear above flare arcades. They were first described in 1999 using the Soft X-ray Telescope (SXT) on board the Yohkoh satellite. SADs are byproducts of the magnetic reconnection process that drives solar flares, but their precise cause remains unknown.

<span class="mw-page-title-main">Hyder flare</span> Slow, large-scale brightening that occurs in the solar chromosphere

A Hyder flare is slow, large-scale brightening that occurs in the solar chromosphere. It resembles a large but feeble solar flare and is identifiable as the signature of the sudden disappearance of a solar prominence. These events occur in the quiet Sun, away from active regions or sunspot groups, and typically in the polar crown filament zone near the Sun's poles. Hyder flares have a two-ribbon morphology and can be faintly observed in chromospheric emission lines such as Hα or as enhanced absorption in He I 1083 nm line.

Jiong Qiu (邱炯) is a Chinese-born American astrophysicist who won the Karen Harvey Prize for her work in solar flares.

The Sun is the star at the center of the Solar System.