Sparse grid

Last updated

Sparse grids are numerical techniques to represent, integrate or interpolate high dimensional functions. They were originally developed by the Russian mathematician Sergey A. Smolyak, a student of Lazar Lyusternik, and are based on a sparse tensor product construction. Computer algorithms for efficient implementations of such grids were later developed by Michael Griebel and Christoph Zenger.

Contents

Curse of dimensionality

The standard way of representing multidimensional functions are tensor or full grids. The number of basis functions or nodes (grid points) that have to be stored and processed depend exponentially on the number of dimensions.

The curse of dimensionality is expressed in the order of the integration error that is made by a quadrature of level , with points. The function has regularity , i.e. is times differentiable. The number of dimensions is .

Smolyak's quadrature rule

Smolyak found a computationally more efficient method of integrating multidimensional functions based on a univariate quadrature rule . The -dimensional Smolyak integral of a function can be written as a recursion formula with the tensor product.

The index to is the level of the discretization. If a 1-dimension integration on level is computed by the evaluation of points, the error estimate for a function of regularity will be

Further reading

Related Research Articles

<span class="mw-page-title-main">Integral</span> Operation in mathematical calculus

In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with differentiation, integration is a fundamental, essential operation of calculus, and serves as a tool to solve problems in mathematics and physics involving the area of an arbitrary shape, the length of a curve, and the volume of a solid, among others.

<span class="mw-page-title-main">Tensor</span> Algebraic object with geometric applications

In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensors. There are many types of tensors, including scalars and vectors, dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product. Tensors are defined independent of any basis, although they are often referred to by their components in a basis related to a particular coordinate system.

In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue, although according to the Bourbaki group they were first introduced by Frigyes Riesz. Lp spaces form an important class of Banach spaces in functional analysis, and of topological vector spaces. Because of their key role in the mathematical analysis of measure and probability spaces, Lebesgue spaces are used also in the theoretical discussion of problems in physics, statistics, economics, finance, engineering, and other disciplines.

<span class="mw-page-title-main">Gaussian quadrature</span> Approximation of the definite integral of a function

In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration. An n-point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield an exact result for polynomials of degree 2n − 1 or less by a suitable choice of the nodes xi and weights wi for i = 1, …, n. The modern formulation using orthogonal polynomials was developed by Carl Gustav Jacobi in 1826. The most common domain of integration for such a rule is taken as [−1, 1], so the rule is stated as

<span class="mw-page-title-main">Numerical integration</span> Family of algorithms for finding the definite integral of a function

In analysis, numerical integration comprises a broad family of algorithms for calculating the numerical value of a definite integral, and by extension, the term is also sometimes used to describe the numerical solution of differential equations. This article focuses on calculation of definite integrals.

The VEGAS algorithm, due to G. Peter Lepage, is a method for reducing error in Monte Carlo simulations by using a known or approximate probability distribution function to concentrate the search in those areas of the integrand that make the greatest contribution to the final integral.

A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. In two dimensions, there is an infinite-dimensional algebra of local conformal transformations, and conformal field theories can sometimes be exactly solved or classified.

<span class="mw-page-title-main">Quasi-Monte Carlo method</span> Numerical integration process

In numerical analysis, the quasi-Monte Carlo method is a method for numerical integration and solving some other problems using low-discrepancy sequences. This is in contrast to the regular Monte Carlo method or Monte Carlo integration, which are based on sequences of pseudorandom numbers.

<span class="mw-page-title-main">Radon transform</span> Integral transform

In mathematics, the Radon transform is the integral transform which takes a function f defined on the plane to a function Rf defined on the (two-dimensional) space of lines in the plane, whose value at a particular line is equal to the line integral of the function over that line. The transform was introduced in 1917 by Johann Radon, who also provided a formula for the inverse transform. Radon further included formulas for the transform in three dimensions, in which the integral is taken over planes. It was later generalized to higher-dimensional Euclidean spaces, and more broadly in the context of integral geometry. The complex analogue of the Radon transform is known as the Penrose transform. The Radon transform is widely applicable to tomography, the creation of an image from the projection data associated with cross-sectional scans of an object.

<span class="mw-page-title-main">Monte Carlo integration</span> Numerical technique

In mathematics, Monte Carlo integration is a technique for numerical integration using random numbers. It is a particular Monte Carlo method that numerically computes a definite integral. While other algorithms usually evaluate the integrand at a regular grid, Monte Carlo randomly chooses points at which the integrand is evaluated. This method is particularly useful for higher-dimensional integrals.

In mathematics, the Hankel transform expresses any given function f(r) as the weighted sum of an infinite number of Bessel functions of the first kind Jν(kr). The Bessel functions in the sum are all of the same order ν, but differ in a scaling factor k along the r axis. The necessary coefficient Fν of each Bessel function in the sum, as a function of the scaling factor k constitutes the transformed function. The Hankel transform is an integral transform and was first developed by the mathematician Hermann Hankel. It is also known as the Fourier–Bessel transform. Just as the Fourier transform for an infinite interval is related to the Fourier series over a finite interval, so the Hankel transform over an infinite interval is related to the Fourier–Bessel series over a finite interval.

In numerical analysis, Lebedev quadrature, named after Vyacheslav Ivanovich Lebedev, is an approximation to the surface integral of a function over a three-dimensional sphere. The grid is constructed so to have octahedral rotation and inversion symmetry. The number and location of the grid points together with a corresponding set of integration weights are determined by enforcing the exact integration of polynomials up to a given order, leading to a sequence of increasingly dense grids analogous to the one-dimensional Gauss-Legendre scheme.

Clenshaw–Curtis quadrature and Fejér quadrature are methods for numerical integration, or "quadrature", that are based on an expansion of the integrand in terms of Chebyshev polynomials. Equivalently, they employ a change of variables and use a discrete cosine transform (DCT) approximation for the cosine series. Besides having fast-converging accuracy comparable to Gaussian quadrature rules, Clenshaw–Curtis quadrature naturally leads to nested quadrature rules, which is important for both adaptive quadrature and multidimensional quadrature (cubature).

Adaptive quadrature is a numerical integration method in which the integral of a function is approximated using static quadrature rules on adaptively refined subintervals of the region of integration. Generally, adaptive algorithms are just as efficient and effective as traditional algorithms for "well behaved" integrands, but are also effective for "badly behaved" integrands for which traditional algorithms may fail.

In computer science, locality-sensitive hashing (LSH) is an algorithmic technique that hashes similar input items into the same "buckets" with high probability. Since similar items end up in the same buckets, this technique can be used for data clustering and nearest neighbor search. It differs from conventional hashing techniques in that hash collisions are maximized, not minimized. Alternatively, the technique can be seen as a way to reduce the dimensionality of high-dimensional data; high-dimensional input items can be reduced to low-dimensional versions while preserving relative distances between items.

High-dimensional integrals in hundreds or thousands of variables occur commonly in finance. These integrals have to be computed numerically to within a threshold . If the integral is of dimension then in the worst case, where one has a guarantee of error at most , the computational complexity is typically of order . That is, the problem suffers the curse of dimensionality. In 1977 P. Boyle, University of Waterloo, proposed using Monte Carlo (MC) to evaluate options. Starting in early 1992, J. F. Traub, Columbia University, and a graduate student at the time, S. Paskov, used quasi-Monte Carlo (QMC) to price a Collateralized mortgage obligation with parameters specified by Goldman Sachs. Even though it was believed by the world's leading experts that QMC should not be used for high-dimensional integration, Paskov and Traub found that QMC beat MC by one to three orders of magnitude and also enjoyed other desirable attributes. Their results were first published in 1995. Today QMC is widely used in the financial sector to value financial derivatives; see list of books below.

<span class="mw-page-title-main">Finite element method</span> Numerical method for solving physical or engineering problems

The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential.

The Gauss–Kronrod quadrature formula is an adaptive method for numerical integration. It is a variant of Gaussian quadrature, in which the evaluation points are chosen so that an accurate approximation can be computed by re-using the information produced by the computation of a less accurate approximation. It is an example of what is called a nested quadrature rule: for the same set of function evaluation points, it has two quadrature rules, one higher order and one lower order. The difference between these two approximations is used to estimate the calculational error of the integration.

A two-dimensional conformal field theory is a quantum field theory on a Euclidean two-dimensional space, that is invariant under local conformal transformations.

Bayesian quadrature is a numerical method for solving numerical integration problems which falls within the class of probabilistic numerical methods. Bayesian quadrature views numerical integration as a Bayesian inference task, where function evaluations are used to estimate the integral of that function. For this reason, it is sometimes also referred to as "Bayesian probabilistic numerical integration" or "Bayesian numerical integration". The name "Bayesian cubature" is also sometimes used when the integrand is multi-dimensional. A potential advantage of this approach is that it provides probabilistic uncertainty quantification for the value of the integral.