Stewart's wilt

Last updated
Stewart's wilt
Cornfleabeetle.jpg
The corn flea beetle is the vector of Stewart's wilt
Causal agents Pantoea stewartii
Hosts maize
Vectors corn flea beetle (Chaetocnema pulicaria)
EPPO Code ERWIST

Stewart's wilt is a bacterial disease of corn caused by the bacterium Pantoea stewartii . The disease is also known as bacterial wilt or bacterial leaf blight and has been shown to be quite problematic in sweet corn. [1] [2] The causal organism is a facultatively anaerobic, gram-negative, rod-shaped bacterium. [3] The disease is endemic in the mid-Atlantic and Ohio River Valley regions and in the southern portion of the Corn Belt. Stewart's Wilt causes minor reductions in field corn yield, despite common occurrence, because most hybrids grown in the Midwest have adequate resistance. However, the disease can be problematic in seed production because many countries have restrictions on maize seed from areas where the Stewart's Wilt occurs. [4]

Contents

Stewart's wilt affects plants, particularly types of maize such as sweet, flint, dent, flour, and popcorn. [5] Sweet corn and popcorn cultivars are more susceptible to Stewart's wilt than field (dent) corn, but some dent corn inbreds and hybrids are susceptible. The production of virulence factors can be caused by the communication system between the bacteria known as quorum sensing. [6] Stewart's wilt causes yield reductions by decreasing the size of corn stand or by limiting its production, resulting in fewer and smaller ears of corn. [7]

Disease Cycle and Symptoms

Chaetocnema pulicaria , the primary vector for P. stewartii, overwinters as adults and begins feeding on corn seedlings early in the spring. The bacterium overwinters in the gut of the adult corn flea beetles. Warmer winter temperatures allow for greater beetle survival and in effect, higher populations in the spring. Emerging beetles in the spring transmit the bacteria into corn leaf tissue through feeding wounds. The corn flea beetles wound the leaf and contaminate the wounds with insect frass, which additionally contains the bacteria. When large populations of corn flea beetles are feeding, skeletonization of leaves and death of seedlings can occur. [8]

Stewart's wilt has two phases of symptoms: the wilt phase and the leaf blight phase. The wilt phase occurs when plants are infected during early vegetative growth stages and become systematically infected. [1] Once the bacteria are inside the plant, they colonize the xylem and intercellular spaces of the leaves. When the bacteria reach the corn stalks, the vascular bundles become brown and necrotic. The kernels may also have grayish lesions with dark margins or they may be irregular in shape and dwarfed. Another common symptom of the bacteria is formation of open cavities within the stalk tissue. While the plants are weak and vulnerable, stalk rot fungi can further invade the corn plant. [9] The degree of multiplication of the bacteria is highly dependent on susceptibility of the cultivar. In most cases, the wilt phase occurs on seedlings, but for certain corn types (i.e. sweet corn), more mature plants can wilt. The wilt phase is systemic, meaning the majority of the plant is infected via bacterial movement and colonization of the plant's vascular system. When the bacterium spreads within the plant, leaves begin withering and can die. Plants become stunted and at times, the whole plant may wilt and die. Dwarfed, bleached tassels are common. Often, plants that have wilt symptoms also have leaf blight symptoms.[ citation needed ]

The second, more common phase of the disease is the leaf blight phase, which occurs on the leaves at any vegetative growth stage. [3] At first, the leaf lesions appear long and irregularly shaped and are light green to yellow and later on, straw colored. On mature plants, yellowish streaks with wavy margins extend along the leaf veins. [1] This leaf blight phase is often prevalent after tasseling and the symptoms look similar to frost damage, drought, nutrient disorders, northern corn leaf blight (caused by Exserohilum turcicum ), and particularly Goss's wilt (caused by Clavibacter michiganensis ssp. nebraskensis). [7] [ failed verification ]

A good way to determine corn has Stewart's wilt symptoms is to look at the leaf tissue under microscope. A good indicator of whether or not the bacteria have infected the stalks is if yellow masses of bacteria are oozing from the vascular bundles. With certain sweet-corn hybrids, yellow, slimy ooze collects on the inner ear husks and/or covers the corn kernels. If the bacterial ooze exhibits non-flagellated, non-spore-forming, rod-shaped bacteria, the likelihood of Stewart's wilt is great. [10]

In certain corn varieties, kernels can be infected later in the growing season after flowering occurs. Although corn kernels can be a source of inoculuum, seed transmission is quite rare. [9] Commercial seed lots obtain phytosanitary certification for Stewart's Wilt by field inspection. The presence of the bacteria in the field at any level results in an automatic fail of the inspection. This causes the disease to be of great importance for producers, as many countries prohibit the import of maize seed from the United States unless it is certified to be free of P. stewartii. [11]

Environment and control

The number of flea beetles emerging in spring from hibernation depends on the severity of winter temperatures. Warm winter temperatures favor the survival of flea beetle vectors and increase the risk of Stewart's disease. The numbers of emerging adults can be estimated by calculating a winter temperature index by averaging the mean temperatures for December, January, and February. If the mean of the mean temperatures is 90 °F (32 °C) or greater, the beetles will survive in high numbers and the disease risk is high; if the mean is between 85 and 90 °F (29 and 32 °C), the risk is moderate to high; 80 to 85 °F (27 to 29 °C), moderate to low; and a mean less than 80 °F (27 °C) represents low risk. [9]

Flea beetles do not survive in the northern half of Illinois due to low winter temperatures. Those found in late spring or summer have migrated from the south. Snow or other winter cover apparently provides insufficient shelter to enhance survival of the overwintering flea beetles. Prolonged periods of wet summer weather are unfavorable for beetle multiplication and feeding, while dry weather is favorable. Consequently, although this disease has been found throughout the world, the bacterium has never survived and spread other than in North America, because the disease depends on where C. pulicaria occurs. In North America, Stewart's wilt is found in the mid-Atlantic and the Ohio River Valley regions and in the southern portion of the Corn Belt. This region includes parts of Connecticut, Delaware, Illinois, Indiana, Iowa, Kentucky, Maryland, Missouri, New Jersey, New York, Ohio, Pennsylvania, Rhode Island, Virginia, and West Virginia. Stewart's wilt can also be found in eastern and midwestern states and portions of Canada, but this depends on whether or not the corn flea beetles survive the winters. Corn flea beetles can transmit the bacteria northward during the summer, but if the insect vectors cannot survive the harsh winter temperatures, then the bacteria cannot be spread. [12] The toothed flea beetle, adult 12-spotted cucumber beetle, seed corn maggot, wheat wireworm, white grubs, and larvae of corn rootworms can also carry P. stewartii from one plant to another during the summer. These pests cannot overwinter and transmit this disease. [13]

All sweet corn varieties are susceptible to wilt in the first leaf stage. Susceptibility decreases and natural control is obtained as plants grows older. External disease control is conducted by insecticide spraying to stop early feeding of overwintering flea beetles. [5] Insecticides should be sprayed as soon as corn first breaks the soil surface. When establishing control measures, spraying should be repeated several times to regulate the presence of the insecticide products in the field. [14] Common insecticides used for control of Stewart's wilt are clothianidin, imidacloprid and thiamethoxam. These insecticides are most effectively used at rates of 1.25 (mg ai/kernel), with clothianidin being the most effective at that rate. Application rates on the labels may vary a little, so follow the label rates for each insecticide. [15] Better results are obtained when seeds are sprayed prior to germination. In furrow spraying and post-germination foliar spraying may not be effective.[ clarification needed ] [10]

Although insecticides are effective, resistant hybrids are the best means of disease control. [16] Hybrid varieties of sweet corn are also available for control. Dent corn hybrids are more resistant to the disease than sweet corn, hence do not require insecticides.[ citation needed ]

Importance

In sweet corn, losses are as significant as hybrid varieties, but are only used on a periodic basis.[ clarification needed ] The susceptible varieties suffer losses ranging from 40 to 100% when infected prior to the five-leaf stage. The losses are 15–35% and 3–15% for seven-leaf and nine-leaf stages, respectively. Stewart's wilt may add additional costs for phytosanitary regulations from trading partners. Such regulations primarily affect seed commerce by preventing seed from being exported or by creating additional costs for phytosanitary inspections prior to export. During epidemics in the 1990s, Stewart's wilt was a significant economic issue for the corn seed industry because of the logistics of trading and exchange of large volumes of field corn seed throughout the world. Stewart's wilt also creates indirect costs for seed producers - in the same way any important disease does - because resources must be used to screen germplasm and breed corn for Stewart's wilt resistance to develop hybrids that efficiently and effectively control the disease. [10] In Kentucky, the disease causes huge losses for corn producers. Stewart's wilt impacts include stand reductions, production of fewer and smaller ears, and an increased susceptibility of wilt-infected plants to stalk rotting organisms.

Origin

Stewart's wilt was first observed by T. J. Burrill in the late 1880s while studying fire blights in the corn fields of southern Illinois. Burrill associated the symptoms he found with dry weather and chinch bug damage, yet he indicated that bacteria could be the cause for the disease. Nonetheless, he was unable to complete Koch's postulates to determine the causal pathogen of the disease.

Then, in 1895, F.C. Stewart observed wilt in sweet-corn plants in Long Island, NY. After completion of Koch's postulates with the bacteria in sweet corn, Stewart gave an accurate account of the symptoms and named the pathogen Pseudomonas stewartii in 1898. With the help of his colleagues, Stewart concluded that the bacteria were readily disseminated by seed. Another 25 years later, a corn flea beetle, Chaetocnema pulicaria, was identified as the primary vector responsible for the midseason spread of the disease.

The taxonomy of the pathogen was under debate for half a century, when in 1963, D.W. Dye named it Erwinia stewartii. Dye did so because the pathogen is closely related to other bacteria in the Erwinia herbicola-Enterobacter agglomerans complex. Recently, the complex was assigned to the genus, Pantoea, which did not agree with the results from the 16S RNA sequence analysis. Due to this difference, the pathogen was named, Erwinia stewartii, and has most recently been named, Pantoea stewartii.

Stewart's wilt was primarily responsible for the development of the first widely grown, single-cross hybrid, 'Golden Cross Bantam'. In 1923, Glenn Smith, a USDA scientist working at Purdue University, created a hybrid from two different lines of the regular, susceptible 'Golden Bantam'. The hybrid was tested in one of the most destructive epidemics of Stewart's wilt in northern Indiana. After a successful performance, the hybrid was legalized and named 'Golden Cross Bantam'. Within a few years, 70–80% of the sweet corn canned in the US was that cultivar. [10]

Related Research Articles

<span class="mw-page-title-main">Fire blight</span> Disease of some Rosaceae trees (especially apples and pears) caused by Erwinia amylovora

Fire blight, also written fireblight, is a contagious disease affecting apples, pears, and some other members of the family Rosaceae. It is a serious concern to apple and pear producers. Under optimal conditions, it can destroy an entire orchard in a single growing season.

<i>Erwinia</i> Genus of bacteria

Erwinia is a genus of Enterobacterales bacteria containing mostly plant pathogenic species which was named for the famous plant pathologist, Erwin Frink Smith. It contains Gram-negative bacteria related to Escherichia coli, Shigella, Salmonella, and Yersinia. They are primarily rod-shaped bacteria.

Pantoea stewartii is a species of plant pathogenic bacteria that causes Stewart's wilt of corn, as well as jackfruit-bronzing disease, bacterial leaf wilt of sugarcane, and leaf blight in rice. P. stewartii is a gram-negative bacterium in the Enterobacterales, a group that also includes Escherichia coli and several other human, animal, and plant pathogens. Most research on this bacterial pathogen to date has been done on strains infecting corn as the other diseases have been identified much more recently. Due to being relatively easy to work with in laboratory research, P. stewartii has been used to study a range of processes in bacterial physiology including quorum sensing, bacterial pigment production, endoglucanase enzymes, and siderophore-mediated iron acquisition.

<i>Dickeya dadantii</i> Disease-causing Gram Negative Bacillus

Dickeya dadantii is a gram-negative bacillus that belongs to the family Pectobacteriaceae. It was formerly known as Erwinia chrysanthemi but was reassigned as Dickeya dadantii in 2005. Members of this family are facultative anaerobes, able to ferment sugars to lactic acid, have nitrate reductase, but lack oxidases. Even though many clinical pathogens are part of the order Enterobacterales, most members of this family are plant pathogens. D. dadantii is a motile, nonsporing, straight rod-shaped cell with rounded ends, much like the other members of the genus, Dickeya. Cells range in size from 0.8 to 3.2 μm by 0.5 to 0.8 μm and are surrounded by numerous flagella (peritrichous).

Glomerella graminicola is an economically important crop parasite affecting both wheat and maize where it causes the plant disease Anthracnose Leaf Blight.

Brenneria salicis is a Gram-negative bacterium that is pathogenic on plants.

<span class="mw-page-title-main">Halo blight</span> Bacterial plant disease

Halo blight of bean is a bacterial disease caused by Pseudomonas syringae pv. phaseolicola. Halo blight’s pathogen is a gram-negative, aerobic, polar-flagellated and non-spore forming bacteria. This bacterial disease was first discovered in the early 1920s, and rapidly became the major disease of beans throughout the world. The disease favors the places where temperatures are moderate and plentiful inoculum is available.

<i>Clavibacter michiganensis</i> Species of bacterium

Clavibacter michiganensis is an aerobic non-sporulating Gram-positive plant pathogenic actinomycete of the genus Clavibacter. Clavibacter michiganensis has several subspecies. Clavibacter michiganensis subsp. michiganensis causes substantial economic losses worldwide by damaging tomatoes and potatoes.

<span class="mw-page-title-main">Bacterial wilt</span> Species of bacterium

Bacterial wilt is a complex of diseases that occur in plants such as Cucurbitaceae and Solanaceae and are caused by the pathogens Erwinia tracheiphila, a gram-negative bacterium, or Curtobacterium flaccumfaciens pv. flaccumfaciens, a gram-positive bacterium. Cucumber and muskmelon plants are most susceptible, but squash, pumpkins, and gourds may also become infected.

<span class="mw-page-title-main">Wilt disease</span> Group of plant diseases

A wilt disease is any number of diseases that affect the vascular system of plants. Attacks by fungi, bacteria, and nematodes can cause rapid killing of plants, large tree branches or even entire trees.

<span class="mw-page-title-main">Bacterial soft rot</span> Bacterial plant disease

Bacterial soft rots are caused by several types of bacteria, but most commonly by species of gram-negative bacteria, Erwinia, Pectobacterium, and Pseudomonas. It is a destructive disease of fruits, vegetables, and ornamentals found worldwide, and affects genera from nearly all the plant families. The bacteria mainly attack the fleshy storage organs of their hosts, but they also affect succulent buds, stems, and petiole tissues. With the aid of special enzymes, the plant is turned into a liquidy mush in order for the bacteria to consume the plant cell's nutrients. Disease spread can be caused by simple physical interaction between infected and healthy tissues during storage or transit. The disease can also be spread by insects. Control of the disease is not always very effective, but sanitary practices in production, storing, and processing are something that can be done in order to slow the spread of the disease and protect yields.

<i>Chaetocnema pulicaria</i> Species of beetle

Chaetocnema pulicaria, also known as the corn flea beetle and clover flea beetle, is a species of flea beetle from Chrysomelidae family, found in Texas, USA and Canada.

<span class="mw-page-title-main">Southern corn leaf blight</span> Fungal disease of maize

Southern corn leaf blight (SCLB) is a fungal disease of maize caused by the plant pathogen Bipolaris maydis.

<i>Xanthomonas campestris</i> pv. <i>vesicatoria</i> Species of bacterium

Xanthomonas campestris pv. vesicatoria is a bacterium that causes bacterial leaf spot (BLS) on peppers and tomatoes. It is a gram-negative and rod-shaped. It causes symptoms throughout the above-ground portion of the plant including leaf spots, fruit spots and stem cankers. Since this bacterium cannot live in soil for more than a few weeks and survives as inoculum on plant debris, removal of dead plant material and chemical applications to living plants are considered effective control mechanisms.

<span class="mw-page-title-main">Beet vascular necrosis</span> Bacterial disease in beet plants

Beet vascular necrosis and rot is a soft rot disease caused by the bacterium Pectobacterium carotovorum subsp. betavasculorum, which has also been known as Pectobacterium betavasculorum and Erwinia carotovora subsp. betavasculorum. It was classified in the genus Erwinia until genetic evidence suggested that it belongs to its own group; however, the name Erwinia is still in use. As such, the disease is sometimes called Erwinia rot today. It is a very destructive disease that has been reported across the United States as well as in Egypt. Symptoms include wilting and black streaks on the leaves and petioles. It is usually not fatal to the plant, but in severe cases the beets will become hollowed and unmarketable. The bacteria is a generalist species which rots beets and other plants by secreting digestive enzymes that break down the cell wall and parenchyma tissues. The bacteria thrive in warm and wet conditions, but cannot survive long in fallow soil. However, it is able to persist for long periods of time in the rhizosphere of weeds and non-host crops. While it is difficult to eradicate, there are cultural practices that can be used to control the spread of the disease, such as avoiding injury to the plants and reducing or eliminating application of nitrogen fertilizer.

<span class="mw-page-title-main">Blackleg (potatoes)</span> Bacterial disease of potato plants

Blackleg is a plant disease of potato caused by pectolytic bacteria that can result in stunting, wilting, chlorosis of leaves, necrosis of several tissues, a decline in yield, and at times the death of the potato plant. The term "blackleg" originates from the typical blackening and decay of the lower stem portion, or "leg", of the plant.

<i>Xanthomonas oryzae</i> pv. <i>oryzae</i> Variety of bacteria

Xanthomonas oryzae pv. oryzae is a bacterial pathovar that causes a serious blight of rice, other grasses, and sedges.

<span class="mw-page-title-main">Bacterial blight of soybean</span> Bacterial plant disease

Bacterial blight of soybean is a widespread disease of soybeans caused by Pseudomonas syringaepv. glycinea.

<span class="mw-page-title-main">Northern corn leaf blight</span> Fungal disease of maize plants

Northern corn leaf blight (NCLB) or Turcicum leaf blight (TLB) is a foliar disease of corn (maize) caused by Exserohilum turcicum, the anamorph of the ascomycete Setosphaeria turcica. With its characteristic cigar-shaped lesions, this disease can cause significant yield loss in susceptible corn hybrids.

<span class="mw-page-title-main">Charlotte Elliott (botanist)</span> American plant physiologist

Charlotte Elliott (1883-1974) was a pioneering American plant physiologist specializing in bacterial organisms that cause disease in crops who was the author of a much-used reference work, the Manual of Bacterial Plant Pathogens. She was the first woman to receive a Ph.D. in botany from the University of Wisconsin, Madison.

References

  1. 1 2 3 Munkvold, G.P. "Corn Stewart's Disease" (PDF). Iowa State University of Science and Technology. Archived from the original (PDF) on 2 May 2012. Retrieved 2 November 2011.
  2. Roper, Caroline (2011). "Pantoea stewartii subsp. stewartii: lessons learned from a xylem-dwelling pathogen of sweet corn". Molecular Plant Pathology. 12 (7): 628–637. doi:10.1111/j.1364-3703.2010.00698.x. PMC   6640275 . PMID   21726365.
  3. 1 2 Munkvold, Gary P.; White, Donald G. (2016-01-01). Compendium of Corn Diseases, Fourth Edition. Diseases and Pests Compendium Series. The American Phytopathological Society. doi:10.1094/9780890544945. ISBN   978-0-89054-494-5.
  4. Pataky, Jerald K.; du Toit, Lindsey J.; Freeman, Noah D. (August 2000). "Stewart's Wilt Reactions of an International Collection of Zea mays Germ Plasm Inoculated with Erwinia stewartii". Plant Disease. 84 (8): 901–906. doi:10.1094/PDIS.2000.84.8.901. ISSN   0191-2917. PMID   30832146.
  5. 1 2 Lipps, Patrick; Dorrance Anne; Mills Dennis. "Stewart's Bacterial Wilt and Leaf Blight of Corn". The Ohio State University. Archived from the original on 24 December 2001. Retrieved 2 November 2011.
  6. Tan, Wen-Si (12 August 2014). "Pantoea sp. Isolated from Tropical Fresh Water Exhibiting N-Acyl Homoserine Lactone Production". The Scientific World Journal. 2014 (2014): 828971. doi: 10.1155/2014/828971 . PMC   4146356 . PMID   25197715.
  7. 1 2 Hershman, D.E.; Vincelli P.; Nesmith W.C. "Stewart's Wilt of Corn". College of Agriculture, University of Kentucky. Archived from the original on 9 June 2010. Retrieved 2 November 2011.
  8. Cook, K (2005). "Population Densities of Corn Flea Beetle (Coleoptera: Chrysomelidae) and Incidence of Stewart's Wilt in Sweet Corn". Journal of Economic Entomology. Entomological Society of America. 98 (3): 673–682. doi: 10.1603/0022-0493-98.3.673 . PMID   16022292. S2CID   26010713.
  9. 1 2 3 Integrated Pest Management – Stewart's Wilt and Blight of Sweet Corn
  10. 1 2 3 4 Pataky, J.K. "Stewart's Wilt of Corn". The Plant Health Instructor. Retrieved 2 November 2011.
  11. Block, C. C.; Hill, J. H.; McGee, D. C. (1999-06-01). "Relationship Between Late-Season Severity of Stewart's Bacterial Wilt and Seed Infection in Maize". Plant Disease. 83 (6): 527–530. doi:10.1094/PDIS.1999.83.6.527. ISSN   0191-2917. PMID   30849827.
  12. Patakay, Jerald. "Stewart's Wilt of Corn". The American Phytopathological Society. Retrieved 17 November 2011.
  13. Plant and Insect Diagnostic Clinic. "Stewart's Wilt". Iowa State University. Retrieved 2 November 2011.
  14. Sherf, Arden; Woods Thomas. "Stewart's Disease of Corn". Dept. of Plant Pathology Cornell University. Retrieved 2 November 2011.
  15. Pataky, J.K.; Michener P.M.; Freeman N.D. (March 2005). "Rates of Seed Treatment Insecticides and Control of Stewart's Wilt in Sweet Corn". Plant Disease. 89 (3): 262–268. doi:10.1094/PD-89-0262. PMID   30795348.
  16. Kuhar, Thomas P; Lydia J Stivers-Young; Michael P Hoffmanna; Alan G Taylor (February 2002). "Control of corn flea beetle and Stewart's wilt in sweet corn with imidacloprid and thiamethoxam seed treatments". Crop Protection. 21 (1): 25–31. doi:10.1016/S0261-2194(01)00056-4.