Stone's theorem on one-parameter unitary groups

Last updated

In mathematics, Stone's theorem on one-parameter unitary groups is a basic theorem of functional analysis that establishes a one-to-one correspondence between self-adjoint operators on a Hilbert space and one-parameter families

Contents

of unitary operators that are strongly continuous, i.e.,

and are homomorphisms, i.e.,

Such one-parameter families are ordinarily referred to as strongly continuous one-parameter unitary groups.

The theorem was proved by MarshallStone  ( 1930 , 1932 ), and Johnvon Neumann  ( 1932 ) showed that the requirement that be strongly continuous can be relaxed to say that it is merely weakly measurable, at least when the Hilbert space is separable.

This is an impressive result, as it allows one to define the derivative of the mapping which is only supposed to be continuous. It is also related to the theory of Lie groups and Lie algebras.

Formal statement

The statement of the theorem is as follows. [1]

Theorem. Let be a strongly continuous one-parameter unitary group. Then there exists a unique (possibly unbounded) operator , that is self-adjoint on and such that
The domain of is defined by
Conversely, let be a (possibly unbounded) self-adjoint operator on Then the one-parameter family of unitary operators defined by
is a strongly continuous one-parameter group.

In both parts of the theorem, the expression is defined by means of the functional calculus, which uses the spectral theorem for unbounded self-adjoint operators.

The operator is called the infinitesimal generator of Furthermore, will be a bounded operator if and only if the operator-valued mapping is norm-continuous.

The infinitesimal generator of a strongly continuous unitary group may be computed as

with the domain of consisting of those vectors for which the limit exists in the norm topology. That is to say, is equal to times the derivative of with respect to at . Part of the statement of the theorem is that this derivative exists—i.e., that is a densely defined self-adjoint operator. The result is not obvious even in the finite-dimensional case, since is only assumed (ahead of time) to be continuous, and not differentiable.

Example

The family of translation operators

is a one-parameter unitary group of unitary operators; the infinitesimal generator of this family is an extension of the differential operator

defined on the space of continuously differentiable complex-valued functions with compact support on Thus

In other words, motion on the line is generated by the momentum operator.

Applications

Stone's theorem has numerous applications in quantum mechanics. For instance, given an isolated quantum mechanical system, with Hilbert space of states H, time evolution is a strongly continuous one-parameter unitary group on . The infinitesimal generator of this group is the system Hamiltonian.

Using Fourier transform

Stone's Theorem can be recast using the language of the Fourier transform. The real line is a locally compact abelian group. Non-degenerate *-representations of the group C*-algebra are in one-to-one correspondence with strongly continuous unitary representations of i.e., strongly continuous one-parameter unitary groups. On the other hand, the Fourier transform is a *-isomorphism from to the -algebra of continuous complex-valued functions on the real line that vanish at infinity. Hence, there is a one-to-one correspondence between strongly continuous one-parameter unitary groups and *-representations of As every *-representation of corresponds uniquely to a self-adjoint operator, Stone's Theorem holds.

Therefore, the procedure for obtaining the infinitesimal generator of a strongly continuous one-parameter unitary group is as follows:

The precise definition of is as follows. Consider the *-algebra the continuous complex-valued functions on with compact support, where the multiplication is given by convolution. The completion of this *-algebra with respect to the -norm is a Banach *-algebra, denoted by Then is defined to be the enveloping -algebra of , i.e., its completion with respect to the largest possible -norm. It is a non-trivial fact that, via the Fourier transform, is isomorphic to A result in this direction is the Riemann-Lebesgue Lemma, which says that the Fourier transform maps to

Generalizations

The Stone–von Neumann theorem generalizes Stone's theorem to a pair of self-adjoint operators, , satisfying the canonical commutation relation, and shows that these are all unitarily equivalent to the position operator and momentum operator on

The Hille–Yosida theorem generalizes Stone's theorem to strongly continuous one-parameter semigroups of contractions on Banach spaces.

Related Research Articles

Bra–ket notation, also called Dirac notation, is a notation for linear algebra and linear operators on complex vector spaces together with their dual space both in the finite-dimensional and infinite-dimensional case. It is specifically designed to ease the types of calculations that frequently come up in quantum mechanics. Its use in quantum mechanics is quite widespread.

In mathematics, specifically in functional analysis, a C-algebra is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra A of continuous linear operators on a complex Hilbert space with two additional properties:

<span class="mw-page-title-main">Functional analysis</span> Area of mathematics

Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure and the linear functions defined on these spaces and suitably respecting these structures. The historical roots of functional analysis lie in the study of spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining, for example, continuous or unitary operators between function spaces. This point of view turned out to be particularly useful for the study of differential and integral equations.

The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which are a kind of linear space. Such are distinguished from mathematical formalisms for physics theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces, and operators on these spaces. In brief, values of physical observables such as energy and momentum were no longer considered as values of functions on phase space, but as eigenvalues; more precisely as spectral values of linear operators in Hilbert space.

The Riesz representation theorem, sometimes called the Riesz–Fréchet representation theorem after Frigyes Riesz and Maurice René Fréchet, establishes an important connection between a Hilbert space and its continuous dual space. If the underlying field is the real numbers, the two are isometrically isomorphic; if the underlying field is the complex numbers, the two are isometrically anti-isomorphic. The (anti-) isomorphism is a particular natural isomorphism.

In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized. This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces. In general, the spectral theorem identifies a class of linear operators that can be modeled by multiplication operators, which are as simple as one can hope to find. In more abstract language, the spectral theorem is a statement about commutative C*-algebras. See also spectral theory for a historical perspective.

In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space V with inner product is a linear map A that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.

<span class="mw-page-title-main">Representation of a Lie group</span> Group representation

In mathematics and theoretical physics, a representation of a Lie group is a linear action of a Lie group on a vector space. Equivalently, a representation is a smooth homomorphism of the group into the group of invertible operators on the vector space. Representations play an important role in the study of continuous symmetry. A great deal is known about such representations, a basic tool in their study being the use of the corresponding 'infinitesimal' representations of Lie algebras.

In mathematics and in theoretical physics, the Stone–von Neumann theorem refers to any one of a number of different formulations of the uniqueness of the canonical commutation relations between position and momentum operators. It is named after Marshall Stone and John von Neumann.

In mathematics, particularly in operator theory and C*-algebra theory, the continuous functional calculus is a functional calculus which allows the application of a continuous function to normal elements of a C*-algebra.

In functional analysis, a branch of mathematics, the Borel functional calculus is a functional calculus, which has particularly broad scope. Thus for instance if T is an operator, applying the squaring function ss2 to T yields the operator T2. Using the functional calculus for larger classes of functions, we can for example define rigorously the "square root" of the (negative) Laplacian operator −Δ or the exponential

In quantum information theory, a quantum channel is a communication channel which can transmit quantum information, as well as classical information. An example of quantum information is the state of a qubit. An example of classical information is a text document transmitted over the Internet.

In mathematics, particularly in functional analysis, a projection-valued measure is a function defined on certain subsets of a fixed set and whose values are self-adjoint projections on a fixed Hilbert space. A projection-valued measure (PVM) is formally similar to a real-valued measure, except that its values are self-adjoint projections rather than real numbers. As in the case of ordinary measures, it is possible to integrate complex-valued functions with respect to a PVM; the result of such an integration is a linear operator on the given Hilbert space.

In mathematics, a C0-semigroup, also known as a strongly continuous one-parameter semigroup, is a generalization of the exponential function. Just as exponential functions provide solutions of scalar linear constant coefficient ordinary differential equations, strongly continuous semigroups provide solutions of linear constant coefficient ordinary differential equations in Banach spaces. Such differential equations in Banach spaces arise from e.g. delay differential equations and partial differential equations.

<span class="mw-page-title-main">Wigner's theorem</span> Theorem in the mathematical formulation of quantum mechanics

Wigner's theorem, proved by Eugene Wigner in 1931, is a cornerstone of the mathematical formulation of quantum mechanics. The theorem specifies how physical symmetries such as rotations, translations, and CPT transformations are represented on the Hilbert space of states.

In quantum mechanics, the position operator is the operator that corresponds to the position observable of a particle.

In operator theory, a bounded operator T: XY between normed vector spaces X and Y is said to be a contraction if its operator norm ||T || ≤ 1. This notion is a special case of the concept of a contraction mapping, but every bounded operator becomes a contraction after suitable scaling. The analysis of contractions provides insight into the structure of operators, or a family of operators. The theory of contractions on Hilbert space is largely due to Béla Szőkefalvi-Nagy and Ciprian Foias.

In quantum mechanics, the expectation value is the probabilistic expected value of the result (measurement) of an experiment. It can be thought of as an average of all the possible outcomes of a measurement as weighted by their likelihood, and as such it is not the most probable value of a measurement; indeed the expectation value may have zero probability of occurring. It is a fundamental concept in all areas of quantum physics.

Coherent states have been introduced in a physical context, first as quasi-classical states in quantum mechanics, then as the backbone of quantum optics and they are described in that spirit in the article Coherent states. However, they have generated a huge variety of generalizations, which have led to a tremendous amount of literature in mathematical physics. In this article, we sketch the main directions of research on this line. For further details, we refer to several existing surveys.

This is a glossary for the terminology in a mathematical field of functional analysis.

References

  1. Hall 2013 Theorem 10.15

Bibliography