Telecoms & Internet converged Services & Protocols for Advanced Networks

Last updated
Telecoms & Internet converged Services & Protocols for Advanced Networks
Founded2003
Parent European Telecommunications Standards Institute

The Telecoms & Internet converged Services & Protocols for Advanced Networks (TISPAN) is a standardization body of ETSI, specializing in fixed networks and Internet convergence. It was formed in 2003 from the amalgamation of the ETSI bodies Telecommunications and Internet Protocol Harmonization Over Networks (TIPHON) and Services and Protocols for Advanced Networks (SPAN).

TISPAN's focus is to define the European view of the Next Generation Networking (NGN), though TISPAN also includes much participation from regions outside Europe.

TISPAN NGN Release 1 was published in December 2005 and contained the architectural foundations and basic specifications required in support of PSTN replacement. The TISPAN NGN architecture is based on sharing common components between cooperating subsystems. The TISPAN NGN architecture complies with the general reference model for next generation networks defined in ITU-T Recommendation Y.2011 [1] and is therefore layered with a service stratum and a transport stratum. Each of these layers is further decomposed into sub-systems that perform specific roles within the overall architecture. This allows new subsystems to be added over time to cover new demands and service classes. By making network resources, applications, and user equipment common to all subsystems, it ensures mobility of users, terminals and services as much as possible, even across administrative boundaries. A key subsystem is based on the architectures of 3rd Generation Partnership Project (3GPP) IP Multimedia Subsystem (IMS). TISPAN has been working with 3GPP to extend the IMS architecture with capabilities required in support of wire-line access.

TISPAN NGN Release 2 was finalized early 2008, and added support for IPTV services and Business Communications [1] over the IMS.

Since early 2008, TISPAN has begun work on the third release of its NGN specifications with prime focus on IPTV enhancements, Content Delivery Networks (CDN) and home networking. In 2011, TISPAN published the specification of a functional architecture for Content Delivery Networks (CDN) and is now working on the specification of the protocols applicable to the reference points identified in this architecture (See ETSI TS 182 019)

The ETSI website on Next Generation Networking [2] states: "Standards for fixed NGN were developed by the now closed ETSI technical committee TISPAN. The TC has adopted the 3GPP™ core IMS specifications using Internet (SIP) protocols to allow features such as Presence, IPTV, Messaging, and Conferencing to be delivered irrespective of the network in use. Maintenance of NGN standards are now the responsibility of TC NTECH."

Related Research Articles

<span class="mw-page-title-main">General Packet Radio Service</span> Packet oriented mobile data service on 2G and 3G

General Packet Radio Service (GPRS), also called 2.5G, is a packet oriented mobile data standard on the 2G cellular communication network's global system for mobile communications (GSM). GPRS was established by European Telecommunications Standards Institute (ETSI) in response to the earlier CDPD and i-mode packet-switched cellular technologies. It is now maintained by the 3rd Generation Partnership Project (3GPP).

<span class="mw-page-title-main">3GPP</span> Mobile telecommunications standards body

The 3rd Generation Partnership Project (3GPP) is an umbrella term for a number of standards organizations which develop protocols for mobile telecommunications. Its best known work is the development and maintenance of:

Non-access stratum (NAS) is a functional layer in the NR, LTE, UMTS and GSM wireless telecom protocol stacks between the core network and user equipment. This layer is used to manage the establishment of communication sessions and for maintaining continuous communications with the user equipment as it moves. The NAS is defined in contrast to the Access Stratum which is responsible for carrying information over the wireless portion of the network. A further description of NAS is that it is a protocol for messages passed between the User Equipment, also known as mobiles, and Core Nodes that is passed transparently through the radio network. Examples of NAS messages include Update or Attach messages, Authentication Messages, Service Requests and so forth. Once the User Equipment (UE) establishes a radio connection, the UE uses the radio connection to communicate with the core nodes to coordinate service. The distinction is that the Access Stratum is for dialogue explicitly between the mobile equipment and the radio network and the NAS is for dialogue between the mobile equipment and core network nodes.

<span class="mw-page-title-main">Unstructured Supplementary Service Data</span> Communications protocol

Unstructured Supplementary Service Data (USSD), sometimes referred to as "quick codes" or "feature codes", is a communications protocol used by GSM cellular telephones to communicate with the mobile network operator's computers. USSD can be used for WAP browsing, prepaid callback service, mobile-money services, location-based content services, menu-based information services, and as part of configuring the phone on the network. The service does not require a messaging app, and does not incur charges.

<span class="mw-page-title-main">Internet Protocol television</span> Television transmitted over a computer network

Internet Protocol television (IPTV) is the delivery of television content over Internet Protocol (IP) networks. This is in contrast to delivery through traditional terrestrial, satellite, and cable television formats. Unlike downloaded media, IPTV offers the ability to stream the source media continuously. As a result, a client media player can begin playing the content almost immediately. This is known as streaming media.

Customized Applications for Mobile networks Enhanced Logic (CAMEL) is a set of standards designed to work on either a GSM core network or the Universal Mobile Telecommunications System (UMTS) network. The framework provides tools for operators to define additional features for standard GSM services/UMTS services. The CAMEL architecture is based on the Intelligent Network (IN) standards, and uses the CAP protocol. The protocols are codified in a series of ETSI Technical Specifications.

The IP Multimedia Subsystem or IP Multimedia Core Network Subsystem (IMS) is a standardised architectural framework for delivering IP multimedia services. Historically, mobile phones have provided voice call services over a circuit-switched-style network, rather than strictly over an IP packet-switched network. Various voice over IP technologies are available on smartphones; IMS provides a standard protocol across vendors.

The next-generation network (NGN) is a body of key architectural changes in telecommunication core and access networks. The general idea behind the NGN is that one network transports all information and services by encapsulating these into IP packets, similar to those used on the Internet. NGNs are commonly built around the Internet Protocol, and therefore the term all IP is also sometimes used to describe the transformation of formerly telephone-centric networks toward NGN.

The CAMEL Application Part (CAP) is a signalling protocol used in the Intelligent Network (IN) architecture. CAP is a Remote Operations Service Element (ROSE) user protocol, and as such is layered on top of the Transaction Capabilities Application Part (TCAP) of the SS#7 protocol suite. CAP is based on a subset of the ETSI Core and allows for the implementation of carrier-grade, value added services such as unified messaging, prepaid, fraud control and Freephone in both the GSM voice and GPRS data networks. CAMEL is a means of adding intelligent applications to mobile networks. It builds upon established practices in the fixed line telephony business that are generally classed under the heading of or INAP CS-2 protocol.

A service delivery platform (SDP) is a set of components that provides a service(s) delivery architecture for a type of service delivered to consumer, whether it be a customer or other system. Although it is commonly used in the context of telecommunications, it can apply to any system that provides a service. Although the TM Forum (TMF) is working on defining specifications in this area, there is no standard definition of SDP in industry and different players define its components, breadth, and depth in slightly different ways.

<span class="mw-page-title-main">E-UTRA</span> 3GPP interface

E-UTRA is the air interface of 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) upgrade path for mobile networks. It is an acronym for Evolved UMTS Terrestrial Radio Access, also known as the Evolved Universal Terrestrial Radio Access in early drafts of the 3GPP LTE specification. E-UTRAN is the combination of E-UTRA, user equipment (UE), and a Node B.

WISPr or Wireless Internet Service Provider roaming is a draft protocol submitted to the Wi-Fi Alliance that allows users to roam between wireless internet service providers in a fashion similar to that which allows cellphone users to roam between carriers. A RADIUS server is used to authenticate the subscriber's credentials.

Text over IP is a means of providing a real-time text (RTT) service that operates over IP-based networks. It complements Voice over IP (VoIP) and Video over IP.

The 3GPP has defined the Voice Call Continuity (VCC) specifications in order to describe how a voice call can be persisted, as a mobile phone moves between circuit switched and packet switched radio domains.

System Architecture Evolution (SAE) is the core network architecture of mobile communications protocol group 3GPP's LTE wireless communication standard.

Mobile IPTV is a technology that enables users to transmit and receive multimedia traffic including video, audio, text and graphic services through IP-based wired and wireless networks, with support for quality of service, quality of experience, security, mobility, and interactive functions. Through Mobile IPTV, users can view IPTV services using a mobile device.

The 3GPP/NGN IP Multimedia Subsystem (IMS) multimedia telephony service (MMTel) is a global standard based on the IMS, offering converged, fixed and mobile real-time multimedia communication using the media capabilities such as voice, real-time video, text, file transfer and sharing of pictures, audio and video clips. With MMTel, users have the capability to add and drop media during a session. You can start with chat, add voice, add another caller, add video, share media and transfer files, and drop any of these without losing or having to end the session. MMTel is one of the registered ICSI feature tags.

In intelligent networks (IN) and cellular networks, service layer is a conceptual layer within a network service provider architecture. It aims at providing middleware that serves third-party value-added services and applications at a higher application layer. The service layer provides capability servers owned by a telecommunication network service provider, accessed through open and secure Application Programming Interfaces (APIs) by application layer servers owned by third-party content providers. The service layer also provides an interface to core networks at a lower resource layer. The lower layers may also be named control layer and transport layer.

IMS is a set of specifications to offer multimedia services through IP protocol. This makes it possible to incorporate all kinds of services, such as voice, multimedia and data, on an accessible platform through any Internet connection.

The Session Initiation Protocol (SIP) is the signaling protocol selected by the 3rd Generation Partnership Project (3GPP) to create and control multimedia sessions with multiple participants in the IP Multimedia Subsystem (IMS). It is therefore a key element in the IMS framework.

References

  1. IEEE Wireless Communications, Volume 16, Issue 3 - Business Trunking Communications in ETSI
  2. ETSI - Next Generation Networks