16VSB

Last updated

16VSB is an abbreviation for 16-level vestigial sideband modulation, capable of transmitting four bits (24=16) at a time.

An abbreviation is a shortened form of a word or phrase. It consists of a group of letters taken from the word or phrase. For example, the word abbreviation can itself be represented by the abbreviation abbr., abbrv., or abbrev.

Contents

How it works

Other slower but more rugged forms of VSB include 2VSB, 4VSB, and 8VSB. 16VSB is capable of twice the data capacity of 8VSB; while 8VSB delivers 19.39 Mbit/s (Megabits per second) in a 6-MHz television channel, 16VSB could deliver 38.78 Mbit/s, while making the sacrifice of being more prone to transmission error.

In telecommunications, 2VSB is an abbreviation for 2-level vestigial sideband modulation, a transmission method capable of transmitting one bit (21=2) at a time.

4VSB is an abbreviation for 4-level vestigial sideband modulation, a type of radio transmission capable of transmitting two bits of information (22=4) at a time. Other faster but less rugged forms include 8VSB and 16VSB. While 2VSB is more rugged, it is also slower.

8VSB is the modulation method used for broadcast in the ATSC digital television standard. ATSC and 8VSB modulation is used primarily in North America; in contrast, the DVB-T standard uses COFDM.

History

While 8VSB is the ATSC digital broadcast modulation format, 16VSB was planned for cable distribution. 16VSB is about twice as susceptible to noise, therefore less suitable than 8VSB for broadcast, but well suited to the signal-to-noise ratio of hybrid fiber-coax distribution, allowing twice as much programming in a 6-MHz channel.

Electrical cable two or more wires running side by side and bonded, twisted, or braided together to form a single assembly

An electrical cable is an assembly of one or more wires running side by side or bundled, which is used to carry electric current.

Broadcasting distribution of audio and video content to a dispersed audience via any audio or visual mass communications medium

Broadcasting is the distribution of audio or video content to a dispersed audience via any electronic mass communications medium, but typically one using the electromagnetic spectrum, in a one-to-many model. Broadcasting began with AM radio, which came into popular use around 1920 with the spread of vacuum tube radio transmitters and receivers. Before this, all forms of electronic communication were one-to-one, with the message intended for a single recipient. The term broadcasting evolved from its use as the agricultural method of sowing seeds in a field by casting them broadly about. It was later adopted for describing the widespread distribution of information by printed materials or by telegraph. Examples applying it to "one-to-many" radio transmissions of an individual station to multiple listeners appeared as early as 1898.

Signal-to-noise ratio is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to the noise power, often expressed in decibels. A ratio higher than 1:1 indicates more signal than noise.

Technological obsolescence

As of 2007, a majority of cable companies have chosen to extend their existing quadrature amplitude modulation-based systems to carry digital television rather than adopting any form of VSB. It is probable that 16VSB has been replaced by Digital Transmission Standard For Cable Television [1] a cable standard that defines 64QAM and 256QAM transmission for digital cable.

Quadrature amplitude modulation (QAM) is the name of a family of digital modulation methods and a related family of analog modulation methods widely used in modern telecommunications to transmit information. It conveys two analog message signals, or two digital bit streams, by changing (modulating) the amplitudes of two carrier waves, using the amplitude-shift keying (ASK) digital modulation scheme or amplitude modulation (AM) analog modulation scheme. The two carrier waves of the same frequency are out of phase with each other by 90°, a condition known as orthogonality and as quadrature. Being the same frequency, the modulated carriers add together, but can be coherently separated (demodulated) because of their orthogonality property. Another key property is that the modulations are low-frequency/low-bandwidth waveforms compared to the carrier frequency, which is known as the narrowband assumption.

Digital television (DTV) is the transmission of television signals, including the sound channel, using digital encoding, in contrast to the earlier television technology, analog television, in which the video and audio are carried by analog signals. It is an innovative advance that represents the first significant evolution in television technology since color television in the 1950s. Digital TV transmits in a new image format called HDTV, with greater resolution than analog TV, in a wide screen aspect ratio similar to recent movies in contrast to the narrower screen of analog TV. It makes more economical use of scarce radio spectrum space; it can transmit multiple channels, up to 7, in the same bandwidth occupied by a single channel of analog television, and provides many new features that analog television cannot. A transition from analog to digital broadcasting began around 2006 in some countries, and many industrial countries have now completed the changeover, while other countries are in various stages of adaptation. Different digital television broadcasting standards have been adopted in different parts of the world; below are the more widely used standards:

Related Research Articles

In telecommunications, orthogonal frequency-division multiplexing (OFDM) is a method of encoding digital data on multiple carrier frequencies. OFDM has developed into a popular scheme for wideband digital communication, used in applications such as digital television and audio broadcasting, DSL internet access, wireless networks, power line networks, and 4G mobile communications.

Pulse-amplitude modulation form of signal modulation where the message information is encoded in the amplitude of a series of signal pulse

Pulse-amplitude modulation (PAM), is a form of signal modulation where the message information is encoded in the amplitude of a series of signal pulses. It is an analog pulse modulation scheme in which the amplitudes of a train of carrier pulses are varied according to the sample value of the message signal. Demodulation is performed by detecting the amplitude level of the carrier at every single period.

Very-high-bit-rate digital subscriber line (VDSL) and very-high-bit-rate digital subscriber line 2 (VDSL2) are digital subscriber line (DSL) technologies providing data transmission faster than asymmetric digital subscriber line (ADSL).

Multichannel Multipoint Distribution Service

Multichannel Multipoint Distribution Service (MMDS), formerly known as Broadband Radio Service (BRS) and also known as Wireless Cable, is a wireless telecommunications technology, used for general-purpose broadband networking or, more commonly, as an alternative method of cable television programming reception.

DVB-T is an abbreviation for "Digital Video Broadcasting — Terrestrial"; it is the DVB European-based consortium standard for the broadcast transmission of digital terrestrial television that was first published in 1997 and first broadcast in the UK in 1998. This system transmits compressed digital audio, digital video and other data in an MPEG transport stream, using coded orthogonal frequency-division multiplexing modulation. It is also the format widely used worldwide for Electronic News Gathering for transmission of video and audio from a mobile newsgathering vehicle to a central receive point.

DVB-C stands for "Digital Video Broadcasting - Cable" and it is the DVB European consortium standard for the broadcast transmission of digital television over cable. This system transmits an MPEG-2 or MPEG-4 family digital audio/digital video stream, using a QAM modulation with channel coding. The standard was first published by the ETSI in 1994, and subsequently became the most widely used transmission system for digital cable television in Europe, Asia and South America. It is deployed worldwide in systems ranging from the larger cable television networks (CATV) down to smaller satellite master antenna TV (SMATV) systems.

Advanced Television Systems Committee (ATSC) standards are a set of standards for digital television transmission over terrestrial, cable, and satellite networks. It is largely a replacement for the analog NTSC standard, and like that standard, used mostly in the United States, Mexico and Canada. Other former users of NTSC, like Japan, have not used ATSC during their digital television transition because they adopted their own system called ISDB.

Data Over Cable Service Interface Specification is an international telecommunications standard that permits the addition of high-bandwidth data transfer to an existing cable television (CATV) system. It is employed by many cable television operators to provide Internet access over their existing hybrid fiber-coaxial (HFC) infrastructure. The version numbers are sometimes prefixed with simply "D" instead of "DOCSIS".

Digital cable is the distribution of cable television using digital video compression for distribution. The technology was originally developed by General Instrument before being acquired by Motorola and subsequently acquired by ARRIS Group. Cable companies converted to digital systems during the 2000s, around the time that television signals were converted to the digital HDTV standard, which was not compatible with earlier analog cable systems. In addition to providing higher resolution HD video, digital cable systems provide expanded services such as pay-per-view programming, cable internet access and cable telephone services. Most digital cable signals are encrypted, which reduced the high incidence of cable theft which occurred in analog systems.

Terrestrial television systems are encoding or formatting standards for the transmission and reception of terrestrial television signals. There were three main analogue television systems in use around the world until the late 2010s (expected): NTSC, PAL, and SECAM. Now in digital terrestrial television (DTT), there are four main systems in use around the world: ATSC, DVB, ISDB and DTMB.

Amateur television

Amateur television (ATV) is the transmission of broadcast quality video and audio over the wide range of frequencies of radio waves allocated for radio amateur (Ham) use. ATV is used for non-commercial experimentation, pleasure, and public service events. Ham TV stations were on the air in many cities before commercial television stations came on the air. Various transmission standards are used, these include the broadcast transmission standards of NTSC in North America and Japan, and PAL or SECAM elsewhere, utilizing the full refresh rates of those standards. ATV includes the study of building of such transmitters and receivers, and the study of radio propagation of signals travelling between transmitting and receiving stations.

The Grand Alliance (GA) was a consortium created in 1993 at the behest of the Federal Communications Commission (FCC) to develop the American digital television and HDTV specification, with the aim of pooling the best work from different companies. It consisted of AT&T Corporation, General Instrument Corporation, Massachusetts Institute of Technology, Philips Consumer Electronics, David Sarnoff Research Center, Thomson Consumer Electronics, and Zenith Electronics Corporation. The Grand Alliance DTV system is the basis for the ATSC standard.

Spectral efficiency, spectrum efficiency or bandwidth efficiency refers to the information rate that can be transmitted over a given bandwidth in a specific communication system. It is a measure of how efficiently a limited frequency spectrum is utilized by the physical layer protocol, and sometimes by the media access control.

QAM is a digital television standard using quadrature amplitude modulation. It is the format by which digital cable channels are encoded and transmitted via cable television providers. QAM is used in a variety of communications systems such as Dial-up modems and WiFi. In cable systems, a QAM tuner is linked to the cable in a manner that is equivalent to an ATSC tuner which is required to receive over-the-air (OTA) digital channels broadcast by local television stations when attached to an antenna. Most new HDTV digital televisions support both of these standards. QAM uses the same 6 MHz bandwidth as ATSC, using a standard known as ITU-T Recommendation J.83 Annex B ("J.83b").

HD Lite is the re-transmission of a particular HDTV channel at reduced picture quality compared to the source.

Cable-ready is a designation which indicates that a TV set or other television-receiving device is capable of receiving cable TV without a set-top box.

A multiplex or mux is the popular term used for the grouping of program services that are sub-grouped as interleaved data packets for broadcast over a network or modulated multiplexed medium, which are split out at the receiving end. There are two different types of groupings, which are closely related but not identical.

A Web-to-TV installation provides a way to show web television or other over-the-top content from the Internet, to a television set. Various technologies to do this include Home theater PCs, digital media receivers, and Smart TVs.

References

  1. ANSI/SCTE 07 2006: Digital Transmission Standard For Cable Television