18S rRNA (adenine1779-N6/adenine1780-N6)-dimethyltransferase

Last updated
18S rRNA (adenine1779-N6/adenine1780-N6)-dimethyltransferase
Identifiers
EC no. 2.1.1.183
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

18S rRNA (adenine1779-N6/adenine1780-N6)-dimethyltransferase (EC 2.1.1.183, 18S rRNA dimethylase Dim1p, Dim1p, ScDim1, m2(6)A dimethylase, KIDIM1) is an enzyme with systematic name S-adenosyl-L-methionine:18S rRNA (adenine1779-N6/adenine1780-N6)-dimethyltransferase. [1] [2] [3] [4] [5] This enzyme catalyses the following chemical reaction

4 S-adenosyl-L-methionine + adenine 1779/adenine 1780 in 18S rRNA 4 S-adenosyl-L-homocysteine + N6-dimethyladenine1779/N6-dimethyladenine1780 in 18S rRNA

DIM1 is involved in pre-rRNA processing.

Related Research Articles

<span class="mw-page-title-main">Methyltransferase</span> Group of methylating enzymes

Methyltransferases are a large group of enzymes that all methylate their substrates but can be split into several subclasses based on their structural features. The most common class of methyltransferases is class I, all of which contain a Rossmann fold for binding S-Adenosyl methionine (SAM). Class II methyltransferases contain a SET domain, which are exemplified by SET domain histone methyltransferases, and class III methyltransferases, which are membrane associated. Methyltransferases can also be grouped as different types utilizing different substrates in methyl transfer reactions. These types include protein methyltransferases, DNA/RNA methyltransferases, natural product methyltransferases, and non-SAM dependent methyltransferases. SAM is the classical methyl donor for methyltransferases, however, examples of other methyl donors are seen in nature. The general mechanism for methyl transfer is a SN2-like nucleophilic attack where the methionine sulfur serves as the leaving group and the methyl group attached to it acts as the electrophile that transfers the methyl group to the enzyme substrate. SAM is converted to S-Adenosyl homocysteine (SAH) during this process. The breaking of the SAM-methyl bond and the formation of the substrate-methyl bond happen nearly simultaneously. These enzymatic reactions are found in many pathways and are implicated in genetic diseases, cancer, and metabolic diseases. Another type of methyl transfer is the radical S-Adenosyl methionine (SAM) which is the methylation of unactivated carbon atoms in primary metabolites, proteins, lipids, and RNA.

<span class="mw-page-title-main">Exosome complex</span> Protein complex that degrades RNA

The exosome complex is a multi-protein intracellular complex capable of degrading various types of RNA molecules. Exosome complexes are found in both eukaryotic cells and archaea, while in bacteria a simpler complex called the degradosome carries out similar functions.

<span class="mw-page-title-main">5.8S ribosomal RNA</span> RNA component of the large subunit of the eukaryotic ribosome

In molecular biology, the 5.8S ribosomal RNA is a non-coding RNA component of the large subunit of the eukaryotic ribosome and so plays an important role in protein translation. It is transcribed by RNA polymerase I as part of the 45S precursor that also contains 18S and 28S rRNA. Its function is thought to be in ribosome translocation. It is also known to form covalent linkage to the p53 tumour suppressor protein. 5.8S rRNA can be used as a reference gene for miRNA detection. The 5.8S ribosomal RNA is used to better understand other rRNA processes and pathways in the cell.

In enzymology, a rRNA (adenine-N6-)-methyltransferase (EC 2.1.1.48) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Lipoyl synthase</span>

Lipoyl synthase is an enzyme that belongs to the radical SAM (S-adenosyl methionine) family. Within the radical SAM superfamily, lipoyl synthase is in a sub-family of enzymes that catalyze sulfur insertion reactions. The enzymes in this subfamily differ from general radical SAM enzymes, as they contain two 4Fe-4S clusters. From these clusters, the enzymes obtain the sulfur groups that will be transferred onto the corresponding substrates. This particular enzyme participates in the final step of lipoic acid metabolism, transferring two sulfur atoms from its 4Fe-4S cluster onto the protein N6-(octanoyl)lysine through radical generation. This enzyme is usually localized to the mitochondria. Two organisms that have been extensively studied with regards to this enzyme are Escherichia coli and Mycobacterium tuberculosis. It is currently being studied in other organisms including yeast, plants, and humans.

<i>S</i>-Adenosylmethionine synthetase enzyme

S-Adenosylmethionine synthetase, also known as methionine adenosyltransferase (MAT), is an enzyme that creates S-adenosylmethionine by reacting methionine and ATP.

23S rRNA (uridine2552-2'-O)-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (uridine2552-2'-O-)-methyltransferase. This enzyme catalyses the following chemical reaction

27S pre-rRNA (guanosine2922-2'-O)-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:27S pre-rRNA (guanosine2922-2'-O-)-methyltransferase. This enzyme catalyses the following chemical reaction

16S rRNA (guanine1405-N7)-methyltransferase (EC 2.1.1.179, methyltransferase Sgm, m7G1405 Mtase, Sgm Mtase, Sgm, sisomicin-gentamicin methyltransferase, sisomicin-gentamicin methylase, GrmA, RmtB, RmtC, ArmA) is an enzyme with systematic name S-adenosyl-L-methionine:16S rRNA (guanine1405-N7)-methyltransferase. This enzyme catalyses the following chemical reaction

23S rRNA (adenine1618-N6)-methyltransferase (EC 2.1.1.181, rRNA large subunit methyltransferase F, YbiN protein, rlmF (gene), m6A1618 methyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (adenine1618-N6)-methyltransferase. This enzyme catalyses the following chemical reaction

16S rRNA (adenine1518-N6/adenine1519-N6)-dimethyltransferase (EC 2.1.1.182, S-adenosylmethionine-6-N',N'-adenosyl (rRNA) dimethyltransferase, KsgA, ksgA methyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:16S rRNA (adenine1518-N6/adenine1519-N6)-dimethyltransferase. This enzyme catalyses the following chemical reaction

23S rRNA (adenine2085-N6)-dimethyltransferase (EC 2.1.1.184, ErmC' methyltransferase, ermC methylase, ermC 23S rRNA methyltransferase, rRNA:m6A methyltransferase ErmC', ErmC', rRNA methyltransferase ErmC' ) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (adenine2085-N6)-dimethyltransferase. This enzyme catalyses the following chemical reaction

23S rRNA (adenine2503-C2,C8)-dimethyltransferase (EC 2.1.1.194, Cfr, Cfr methyltransferase, Cfr rRNA methyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (adenine2503-C2,C8)-dimethyltransferase. This enzyme catalyses the following chemical reaction

Multisite-specific tRNA:(cytosine-C5)-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (cytosine-C5)-methyltransferase. This enzyme catalyses the following chemical reaction

TRNA (guanine10-N2)-dimethyltransferase (EC 2.1.1.213, PAB1283, N(2),N(2)-dimethylguanosine tRNA methyltransferase, Trm-G10, PabTrm-G10, PabTrm-m2 2G10 enzyme) is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (guanine10-N2)-dimethyltransferase. This enzyme catalyses the following chemical reaction

TRNA (guanine26-N2/guanine27-N2)-dimethyltransferase (EC 2.1.1.215, Trm1, tRNA (N2,N2-guanine)-dimethyltransferase, tRNA (m2(2G26) methyltransferase, Trm1[tRNA (m2(2)G26) methyltransferase]) is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (guanine26-N2/guanine27-N2)-dimethyltransferase. This enzyme catalyses the following chemical reaction

TRNA (guanine26-N2)-dimethyltransferase (EC 2.1.1.216, Trm1p, TRM1, tRNA (m22G26)dimethyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (guanine26-N2)-dimethyltransferase. This enzyme catalyses the following chemical reaction

tRNA (guanine37-N1)-methyltransferase (EC 2.1.1.228, TrmD, tRNA (m1G37) methyltransferase, transfer RNA (m1G37) methyltransferase, Trm5p, TRMT5, tRNA-(N1G37) methyltransferase, MJ0883 (gene)) is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (guanine37-N1)-methyltransferase. This enzyme catalyses the following chemical reaction

DTDP-3-amino-3,6-dideoxy-alpha-D-glucopyranose N,N-dimethyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:dTDP-3-amino-3,6-dideoxy-alpha-D-glucopyranose 3-N,N-dimethyltransferase. This enzyme catalyses the following chemical reaction

RRNA small subunit pseudouridine methyltransferase Nep1 (EC 2.1.1.260, Nep1, nucleolar essential protein 1) is an enzyme with systematic name S-adenosyl-L-methionine:18S rRNA (pseudouridine1191-N1)-methyltransferase. This enzyme catalyses the following chemical reaction

References

  1. Lafontaine D, Vandenhaute J, Tollervey D (October 1995). "The 18S rRNA dimethylase Dim1p is required for pre-ribosomal RNA processing in yeast". Genes & Development. 9 (20): 2470–81. doi: 10.1101/gad.9.20.2470 . PMID   7590228.
  2. Lafontaine DL, Preiss T, Tollervey D (April 1998). "Yeast 18S rRNA dimethylase Dim1p: a quality control mechanism in ribosome synthesis?". Molecular and Cellular Biology. 18 (4): 2360–70. doi:10.1128/mcb.18.4.2360. PMC   121492 . PMID   9528805.
  3. Pulicherla N, Pogorzala LA, Xu Z, O Farrell HC, Musayev FN, Scarsdale JN, Sia EA, Culver GM, Rife JP (September 2009). "Structural and functional divergence within the Dim1/KsgA family of rRNA methyltransferases". Journal of Molecular Biology. 391 (5): 884–93. doi:10.1016/j.jmb.2009.06.015. PMC   2753216 . PMID   19520088.
  4. Lafontaine D, Delcour J, Glasser AL, Desgrès J, Vandenhaute J (August 1994). "The DIM1 gene responsible for the conserved m6(2)Am6(2)A dimethylation in the 3'-terminal loop of 18 S rRNA is essential in yeast". Journal of Molecular Biology. 241 (3): 492–7. doi:10.1006/jmbi.1994.1525. PMID   8064863.
  5. O'Farrell HC, Pulicherla N, Desai PM, Rife JP (May 2006). "Recognition of a complex substrate by the KsgA/Dim1 family of enzymes has been conserved throughout evolution". RNA. 12 (5): 725–33. doi:10.1261/rna.2310406. PMC   1440906 . PMID   16540698.