3-Hydroxysteroid dehydrogenase

Last updated

3-Hydroxysteroid dehydrogenase (3-HSD) may refer to:

Related Research Articles

Congenital adrenal hyperplasia due to 3β-hydroxysteroid dehydrogenase deficiency

Congenital adrenal hyperplasia due to 3β-hydroxysteroid dehydrogenase deficiency is an uncommon form of congenital adrenal hyperplasia (CAH) resulting from a mutation in the gene for one of the key enzymes in cortisol synthesis by the adrenal gland, 3β-hydroxysteroid dehydrogenase (3β-HSD) type II (HSD3B2). As a result, higher levels of 17α-hydroxypregnenolone appear in the blood with adrenocorticotropic hormone (ACTH) challenge, which stimulates adrenal corticosteroid synthesis.

11β-Hydroxysteroid dehydrogenase enzymes catalyze the conversion of inert 11 keto-products (cortisone) to active cortisol, or vice versa, thus regulating the access of glucocorticoids to the steroid receptors.

Carbenoxolone

Carbenoxolone (CBX) is a glycyrrhetinic acid derivative with a steroid-like structure, similar to substances found in the root of the licorice plant. Carbenoxolone is used for the treatment of peptic, esophageal and oral ulceration and inflammation. Electrolyte imbalance is a serious side effect of carbenoxolone when used systemically.

Corticosteroid 11-beta-dehydrogenase isozyme 2

Corticosteroid 11-β-dehydrogenase isozyme 2 also known as 11-β-hydroxysteroid dehydrogenase 2 is an enzyme that in humans is encoded by the HSD11B2 gene.

11β-Hydroxysteroid dehydrogenase type 1

11β-Hydroxysteroid dehydrogenase type 1, also known as cortisone reductase, is an NADPH-dependent enzyme highly expressed in key metabolic tissues including liver, adipose tissue, and the central nervous system. In these tissues, HSD11B1 reduces cortisone to the active hormone cortisol that activates glucocorticoid receptors. It belongs to the family of short-chain dehydrogenases.

3β-Hydroxysteroid dehydrogenase/Δ5-4 isomerase (3β-HSD) is an enzyme that catalyzes the biosynthesis of the steroid progesterone from pregnenolone, 17α-hydroxyprogesterone from 17α-hydroxypregnenolone, and androstenedione from dehydroepiandrosterone (DHEA) in the adrenal gland. It is the only enzyme in the adrenal pathway of corticosteroid synthesis that is not a member of the cytochrome P450 family. It is also present in other steroid-producing tissues, including the ovary, testis and placenta. In humans, there are two 3β-HSD isozymes encoded by the HSD3B1 and HSD3B2 genes.

17β-Hydroxysteroid dehydrogenase III deficiency Rare autosomal recessive disorder causing impaired masculinisation

17β-Hydroxysteroid dehydrogenase III deficiency is a rare autosomal recessive disorder of sexual development, or intersex condition, affecting testosterone biosynthesis by 17β-hydroxysteroid dehydrogenase III, which can produce impaired virilization of genetically male infants.

17β-Hydroxysteroid dehydrogenases, also 17-ketosteroid reductases (17-KSR), are a group of alcohol oxidoreductases which catalyze the reduction of 17-ketosteroids and the dehydrogenation of 17β-hydroxysteroids in steroidogenesis and steroid metabolism. This includes interconversion of DHEA and androstenediol, androstenedione and testosterone, and estrone and estradiol.

In enzymology, a 20-α-hydroxysteroid dehydrogenase (EC 1.1.1.149) is an enzyme that catalyzes the chemical reaction

In enzymology, a 3alpha(17beta)-hydroxysteroid dehydrogenase (NAD+) (EC 1.1.1.239) is an enzyme that catalyzes the chemical reaction:

3alpha(or 20beta)-hydroxysteroid dehydrogenase Class of enzymes

In enzymology, a 3alpha(or 20beta)-hydroxysteroid dehydrogenase (EC 1.1.1.53) is an enzyme that catalyzes the chemical reaction

HSD17B10

17-β-Hydroxysteroid dehydrogenase X (HSD10) also known as 3-hydroxyacyl-CoA dehydrogenase type-2 is a mitochondrial enzyme that in humans is encoded by the HSD17B10 gene. Several alternatively spliced transcript variants have been identified, but the full-length nature of only two transcript variants has been determined. Human HSD10 cDNA was cloned from brain (NM_004493), and the resulting protein, a homotetramer, was first characterized as a short chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD). Active sites of this enzyme can accommodate different substrates; 17β-HSD10 is involved in the oxidation of isoleucine, branched-chain fatty acids, and xenobiotics as well as the metabolism of sex hormones and neuroactive steroids.

HSD17B2

17β-Hydroxysteroid dehydrogenase 2 (17β-HSD2) is an enzyme of the 17β-hydroxysteroid dehydrogenase (17β-HSD) family that in humans is encoded by the HSD17B2 gene.

3α-Hydroxysteroid dehydrogenase

3α-Hydroxysteroid dehydrogenase is an enzyme that in humans is encoded by the AKR1C4 gene. It is known to be necessary for the synthesis of the endogenous neurosteroids allopregnanolone, THDOC, and 3α-androstanediol. It is also known to catalyze the reversible conversion of 3α-androstanediol (5α-androstane-3α,17β-diol) to dihydrotestosterone and vice versa.

Formebolone

Formebolone, also known (confusingly) as formyldienolone, as well as 2-formyl-11α-hydroxy-17α-methyl-δ1-testosterone, is an orally active anabolic-androgenic steroid (AAS) described as an anticatabolic and anabolic drug that is or has been marketed in Spain and Italy. As an AAS, it shows some anabolic activity, though it is inferior to testosterone in terms of potency, but is said to have virtually no androgenic activity. Formebolone counteracts the catabolic effects of potent glucocorticoids like dexamethasone phosphate. A close analogue, roxibolone, shows similar antiglucocorticoid activity to formebolone but, in contrast, is devoid of activity as an AAS.

Roxibolone

Roxibolone (INN), also known as 11β,17β-dihydroxy-17α-methyl-3-oxoandrosta-1,4-diene-2-carboxylic acid, is a steroidal antiglucocorticoid described as an anticholesterolemic (cholesterol-lowering) and anabolic drug which was never marketed. Roxibolone is closely related to formebolone, which shows antiglucocorticoid activity similarly and, with the exception of having a carboxaldehyde group at the C2 position instead of a carboxylic acid group, roxibolone is structurally almost identical to. The 2-decyl ester of roxibolone, decylroxibolone, is a long-acting prodrug of roxibolone with similar activity.

17beta dehydrogenase or 17β dehydrogenase may refer to:

20α-Dihydroprogesterone

20α-Dihydroprogesterone (20α-DHP), also known as 20α-hydroxyprogesterone (20α-OHP), is a naturally occurring, endogenous progestogen. It is a metabolite of progesterone, formed by the 20α-hydroxysteroid dehydrogenases (20α-HSDs) AKR1C1, AKR1C2, and AKR1C3 and the 17β-hydroxysteroid dehydrogenase (17β-HSD) HSD17B1. 20α-DHP can be transformed back into progesterone by 20α-HSDs and by the 17β-HSD HSD17B2. HSD17B2 is expressed in the human endometrium and cervix among other tissues. In animal studies, 20α-DHP has been found to be selectively taken up into and retained in target tissues such as the uterus, brain, and skeletal muscle.

11α-Hydroxyprogesterone

11α-Hydroxyprogesterone (11α-OHP), or 11α-hydroxypregn-4-ene-3,20-dione is an endogenous steroid and metabolite of progesterone. It is a weak antiandrogen, and is devoid of androgenic, estrogenic, and progestogenic activity. It was investigated as a topical antiandrogen for the treatment of androgen-dependent skin conditions in the early 1950s, and was found to produce some benefit. In 1995, 11α-OHP, along with its epimer 11β-hydroxyprogesterone, was identified as a very potent competitive inhibitor of both isoforms (1 and 2) of 11β-hydroxysteroid dehydrogenase (11β-HSD). It is notably not metabolized by 11β-HSD2. 11α-OHP is a more potent inhibitor of 11β-HSD than enoxolone (glycyrrhetinic acid) or carbenoxolone in vitro (IC50 = 0.9 nM; IC50 = 5 nM in transfected cells). The compound has been found to be highly active in conferring mineralocorticoid sodium-retaining activity of corticosterone in vivo in rat bioassays and in increasing blood pressure, effects that it mediates by preventing the 11β-HSD-mediated inactivation of endogenous corticosteroids. Because of its inhibition of 11β-HSD and consequent potentiation of corticosteroids, 11α-OHP has recently been patented for the treatment of skin diseases, particularly psoriasis in combination with clobetasol propionate and minoxidil.

20β-Dihydroprogesterone

20β-Dihydroprogesterone (20β-DHP), also known as 20β-hydroxyprogesterone (20β-OHP), is an endogenous metabolite of progesterone which is formed by 20β-hydroxysteroid dehydrogenase (20β-HSD). It is a progestogen similarly to progesterone, with about 20 to 50% of the progestogenic activity of progesterone. It can be converted by 20β-HSD into progesterone in the uterus. The effects of 20β-HSD on the uterus, mammary glands, and in maintaining pregnancy have been studied. The progestogenic activity of 20β-HSD has also been characterized in women.

References