A5/2

Last updated

A5/2 is a stream cipher used to provide voice privacy in the GSM cellular telephone protocol. It was designed in 1992-1993 (finished March 1993) as a replacement for the relatively stronger (but still weak) A5/1, to allow the GSM standard to be exported to countries "with restrictions on the import of products with cryptographic security features". [1]

Contents

The cipher is based on a combination of four linear-feedback shift registers with irregular clocking and a non-linear combiner.

In 1999, Ian Goldberg and David A. Wagner cryptanalyzed A5/2 in the same month it was reverse engineered, and showed that it was extremely weak – so much so that low end equipment can probably break it in real time. [2]

In 2003, Elad Barkan, Eli Biham and Nathan Keller presented a ciphertext-only attack based on the error correcting codes used in GSM communication. They also demonstrated a vulnerability in the GSM protocols that allows a man-in-the-middle attack to work whenever the mobile phone supports A5/2, regardless of whether it was actually being used. [3]

Since July 1, 2006, the GSMA (GSM Association) mandated that GSM Mobile Phones will not support the A5/2 Cipher any longer, due to its weakness, and the fact that A5/1 is deemed mandatory by the 3GPP association. In July 2007, the 3GPP has approved a change request to prohibit the implementation of A5/2 in any new mobile phones, stating: "It is mandatory for A5/1 and non encrypted mode to be implemented in mobile stations. It is prohibited to implement A5/2 in mobile stations." [4] If the network does not support A5/1 then an unencrypted connection can be used.

See also

Related Research Articles

<span class="mw-page-title-main">Cryptanalysis</span> Study of analyzing information systems in order to discover their hidden aspects

Cryptanalysis refers to the process of analyzing information systems in order to understand hidden aspects of the systems. Cryptanalysis is used to breach cryptographic security systems and gain access to the contents of encrypted messages, even if the cryptographic key is unknown.

<span class="mw-page-title-main">Data Encryption Standard</span> Early unclassified symmetric-key block cipher

The Data Encryption Standard is a symmetric-key algorithm for the encryption of digital data. Although its short key length of 56 bits makes it too insecure for modern applications, it has been highly influential in the advancement of cryptography.

Differential cryptanalysis is a general form of cryptanalysis applicable primarily to block ciphers, but also to stream ciphers and cryptographic hash functions. In the broadest sense, it is the study of how differences in information input can affect the resultant difference at the output. In the case of a block cipher, it refers to a set of techniques for tracing differences through the network of transformation, discovering where the cipher exhibits non-random behavior, and exploiting such properties to recover the secret key.

<span class="mw-page-title-main">International Data Encryption Algorithm</span>

In cryptography, the International Data Encryption Algorithm (IDEA), originally called Improved Proposed Encryption Standard (IPES), is a symmetric-key block cipher designed by James Massey of ETH Zurich and Xuejia Lai and was first described in 1991. The algorithm was intended as a replacement for the Data Encryption Standard (DES). IDEA is a minor revision of an earlier cipher Proposed Encryption Standard (PES).

Articles related to cryptography include:

A5/1 is a stream cipher used to provide over-the-air communication privacy in the GSM cellular telephone standard. It is one of several implementations of the A5 security protocol. It was initially kept secret, but became public knowledge through leaks and reverse engineering. A number of serious weaknesses in the cipher have been identified.

<span class="mw-page-title-main">Eli Biham</span> Israeli cryptographer and cryptanalyst

Eli Biham is an Israeli cryptographer and cryptanalyst, currently a professor at the Technion - Israel Institute of Technology Computer Science department. Starting from October 2008 and till 2013, Biham was the dean of the Technion Computer Science department, after serving for two years as chief of CS graduate school. Biham received his Ph.D. for inventing (publicly) differential cryptanalysis, while working under Adi Shamir. It had, it turned out, been invented at least twice before. A team at IBM discovered it during their work on DES, and was requested/required to keep their discovery secret by the NSA, who evidently knew about it as well.

<span class="mw-page-title-main">GOST (block cipher)</span> Soviet/Russian national standard block cipher

The GOST block cipher (Magma), defined in the standard GOST 28147-89, is a Soviet and Russian government standard symmetric key block cipher with a block size of 64 bits. The original standard, published in 1989, did not give the cipher any name, but the most recent revision of the standard, GOST R 34.12-2015, specifies that it may be referred to as Magma. The GOST hash function is based on this cipher. The new standard also specifies a new 128-bit block cipher called Kuznyechik.

<span class="mw-page-title-main">FEAL</span> Block cipher

In cryptography, FEAL is a block cipher proposed as an alternative to the Data Encryption Standard (DES), and designed to be much faster in software. The Feistel based algorithm was first published in 1987 by Akihiro Shimizu and Shoji Miyaguchi from NTT. The cipher is susceptible to various forms of cryptanalysis, and has acted as a catalyst in the discovery of differential and linear cryptanalysis.

KASUMI is a block cipher used in UMTS, GSM, and GPRS mobile communications systems. In UMTS, KASUMI is used in the confidentiality (f8) and integrity algorithms (f9) with names UEA1 and UIA1, respectively. In GSM, KASUMI is used in the A5/3 key stream generator and in GPRS in the GEA3 key stream generator.

<span class="mw-page-title-main">DES-X</span> Block cipher

In cryptography, DES-X is a variant on the DES symmetric-key block cipher intended to increase the complexity of a brute-force attack. The technique used to increase the complexity is called key whitening.

In cryptography, Khufu and Khafre are two block ciphers designed by Ralph Merkle in 1989 while working at Xerox's Palo Alto Research Center. Along with Snefru, a cryptographic hash function, the ciphers were named after the Egyptian Pharaohs Khufu, Khafre and Sneferu.

In cryptography, the Cellular Message Encryption Algorithm (CMEA) is a block cipher which was used for securing mobile phones in the United States. CMEA is one of four cryptographic primitives specified in a Telecommunications Industry Association (TIA) standard, and is designed to encrypt the control channel, rather than the voice data. In 1997, a group of cryptographers published attacks on the cipher showing it had several weaknesses which give it a trivial effective strength of a 24-bit to 32-bit cipher. Some accusations were made that the NSA had pressured the original designers into crippling CMEA, but the NSA has denied any role in the design or selection of the algorithm. The ECMEA and SCEMA ciphers are derived from CMEA.

Multiple encryption is the process of encrypting an already encrypted message one or more times, either using the same or a different algorithm. It is also known as cascade encryption, cascade ciphering, multiple encryption, and superencipherment. Superencryption refers to the outer-level encryption of a multiple encryption.

<span class="mw-page-title-main">One-time password</span> Password that can only be used once

A one-time password (OTP), also known as a one-time PIN, one-time authorization code (OTAC) or dynamic password, is a password that is valid for only one login session or transaction, on a computer system or other digital device. OTPs avoid several shortcomings that are associated with traditional (static) password-based authentication; a number of implementations also incorporate two-factor authentication by ensuring that the one-time password requires access to something a person has as well as something a person knows.

<span class="mw-page-title-main">Boomerang attack</span> Form of cryptanalysis

In cryptography, the boomerang attack is a method for the cryptanalysis of block ciphers based on differential cryptanalysis. The attack was published in 1999 by David Wagner, who used it to break the COCONUT98 cipher.

In cryptography, COCONUT98 is a block cipher designed by Serge Vaudenay in 1998. It was one of the first concrete applications of Vaudenay's decorrelation theory, designed to be provably secure against differential cryptanalysis, linear cryptanalysis, and even certain types of undiscovered cryptanalytic attacks.

The following outline is provided as an overview of and topical guide to cryptography:

This article summarizes publicly known attacks against block ciphers and stream ciphers. Note that there are perhaps attacks that are not publicly known, and not all entries may be up to date.

<span class="mw-page-title-main">Orr Dunkelman</span> Israeli cryptographer and cryptanalyst

Orr Dunkelman is an Israeli cryptographer and cryptanalyst, currently a professor at the University of Haifa Computer Science department. Dunkelman is a co-director of the Center for Cyber Law & Privacy at the University of Haifa and a co-founder of Privacy Israel, an Israeli NGO for promoting privacy in Israel.

References

  1. Security Algorithms Group of Experts (SAGE) (March 1996). "ETR 278 - Report on the specification and evaluation of the GSM cipher algorithm A5/2" (PDF). European Telecommunications Standards Institute (ETSI). Archived (PDF) from the original on December 4, 2013.
  2. Goldberg, Ian; Wagner, David; Green, Lucky (August 26, 1999). "The (Real-Time) Cryptanalysis of A5/2". David Wagner's page at UC Berkeley Department of Electrical Engineering and Computer Sciences. Archived from the original on April 21, 2021.
  3. Barkan, Elad; Biham, Eli; Keller, Nathan (2003). "Instant Ciphertext-Only Cryptanalysis of GSM Encrypted Communication". In Boneh, Dan (ed.). Advances in Cryptology - CRYPTO 2003. Lecture Notes in Computer Science. Vol. 2729. Berlin, Heidelberg: Springer. pp. 600–616. doi: 10.1007/978-3-540-45146-4_35 . ISBN   978-3-540-45146-4.
  4. 3GPP TSG-SA WG3 (Security) Meeting #48 (September 18, 2007). "SP-070671 - Prohibiting A5/2 in mobile stations and other clarifications regarding A5 algorithm support". 3GPP Change Requests Portal. Archived from the original on April 21, 2021.