ADF/Cofilin family

Last updated
Cartoon representation of a cofilin (actin depolymerizing factor, ADF). PDB 1cof EBI.jpg
Cartoon representation of a cofilin (actin depolymerizing factor, ADF).

ADF/cofilin is a family of actin-binding proteins associated with the rapid depolymerization of actin microfilaments that give actin its characteristic dynamic instability. [1] This dynamic instability is central to actin's role in muscle contraction, cell motility and transcription regulation. [2]

Contents

Three highly conserved and highly (70%-82%) identical genes belonging to this family have been described in humans and mice: [3]

Actin-binding proteins regulate assembly and disassembly of actin filaments. [4] Cofilin, a member of the ADF/cofilin family is actually a protein with 70% sequence identity to destrin, making it part of the ADF/cofilin family of small ADP-binding proteins. [5] [6] The protein binds to actin monomers and filaments, G actin and F actin, respectively. [7] Cofilin causes depolymerization at the minus end of filaments, thereby preventing their reassembly. The protein is known to sever actin filaments by creating more positive ends on filament fragments. [4] Cofilin/ADF (destrin) is likely to sever F-actin without capping [6] and prefers ADP-actin. These monomers can be recycled by profilin, activating monomers to go back into filament form again by an ADP-to-ATP exchange. ATP-actin is then available for assembly. [4]

Structure

Cofilin-1 protein, a member of the actin depolymerizing factor protein family, isolated in yeast. PDB 1cof EBI.jpg
Cofilin-1 protein, a member of the actin depolymerizing factor protein family, isolated in yeast.

The structure of actin depolymerizing factors is highly conserved across many organism due to actin's importance in many cellular processes. [8] Proteins of the actin depolymerizing factor family characteristically consist of five beta sheets, four antiparallel and one parallel, and four alpha helices with a central alpha helix providing the structure and stability of the proteins. [8] The actin depolymerizing factor homology domain (ADF-H domain) allows for binding to actin subunits and includes the central alpha helix, the N-terminus extension, and the C terminus helix. [9] [8]

Cofilin binds monomeric (G-actin) and filamentous actin (F-actin). Its binding affinities are higher for ADP-actin over ADP-Pi and ATP-actin. Its binding changes the twist of F-actin. The structure of ADF was first characterized in 1980 by James Bamburg. [10] Four actin histidines near the cofilin binding site may be needed for cofilin/actin interaction, but pH sensitivity alone may not be enough of an explanation for the levels of interaction encountered. Cofilin is accommodated in ADP-F actin because of increased flexibility in this form of actin. Binding by both cofilin and ADF (destrin) causes the crossover length of the filament to be reduced. Therefore, strains increase filament dynamics and the level of filament fragmentation observed. [6]

Function

Cofilin is a ubiquitous actin-binding factor required for the reorganization of actin filaments. ADF/Cofilin family members bind G-actin monomers and depolymerize actin filaments through two mechanisms: severing [11] and increasing the off-rate for actin monomers from the pointed end. [12] "Older" ADP/ADP-Pi actin filaments free of tropomyosin and proper pH are required for cofilin to function effectively. In the presence of readily available ATP-G-actin cofilin speeds up actin polymerization via its actin-severing activity (providing free barbed ends for further polymerization and nucleation by the Arp2/3 complex). [13] As a long-lasting in vivo effect, cofilin recycles older ADP-F-actin, helping cell to maintain ATP-G-actin pool for sustained motility. pH, phosphorylation and phosphoinositides regulate cofilin's binding and associating activity with actin [7]

The Arp2/3 complex and cofilin work together to reorganize the actin filaments in the cytoskeleton. Arp 2/3, an actin binding proteins complex, binds to the side of ATP-F-actin near the growing barbed end of the filament, causing nucleation of a new F-actin branch, [13] while cofilin-driven depolymerization takes place after dissociating from the Arp2/3 complex. [4] They also work together to reorganize actin filaments in order to traffic more proteins by vesicle to continue the growth of filaments. [14]

Cofilin also binds with other proteins such as myosin, tropomyosin, α-actinin, gelsolin and scruin. These proteins compete with cofilin for actin binding. [6] Сofilin also play role in innate immune response[ citation needed ].

In a Model Organism

ADF/cofilin is found in ruffling membranes and at the leading edge of mobile cells. [12] In particular, ADF/cofilin promotes disassembly of the filament at the rear of the brush in Xenopus laevis lamellipodia, a protrusion from fibroblast cells characterized by actin networks. Subunits are added to barbed ends and lost from rear-facing pointed ends. Increasing the rate constant, k, for actin dissociation from the pointed ends was found to sever actin filaments. Through this experimentation, it was found that ATP or ADP-Pi are probably involved in binding to actin filaments. [14]

Mechanism of Action

F-actin (filamentous actin) is stabilized when it is bound to ATP due to the presence of a serine on the second subunit of actin that is able to form hydrogen bonds to the last phosphate group in ATP and a nearby histidine attached to the main loop. This interaction stabilizes the structure internally due to the interactions between the main loop and the second subunit. When ATP is hydrolyzed to ADP, the serine can no longer form a hydrogen bond to ADP due to the loss of the inorganic phosphate which causes the serine side chain to twist, causing a conformational change in the second subunit. [15] [12] This conformational change also causes the serine to no longer be able to form a hydrogen bond with the histidine attached to the main loop and this weakens the linkage between subunits one and three, causing the entire molecule to twist. This twisting puts strain on the molecule and destabilizes it. [2]

Actin depolymerizing factor is able to bind to the destabilized F-actin by inserting the central helix into the cleft between the first and third subunits of actin. Actin depolymerizing factor binds F-actin cooperatively and induces a conformational change in F-actin that causes it to twist further and become more destabilized. This twisting causes severing of the bond between actin monomers, depolymerizing the filament. [2]

Regulation

Phosphorylation

Actin depolymerization factor is regulated by the phosphorylation of a serine on the C terminus by LIM kinases. [16] Actin depolymerizing factor is activated when it is dephosphorylated and inhibited when it is phosphorylated. [17]

pH

Tropomyosin bound to actin Tropomyosin bound to actin.png
Tropomyosin bound to actin

An alkaline environment stabilizes the inorganic phosphate released when ATP is hydrolyzed to ADP, so therefore a higher pH increases the favorability of the ATP bound to F-actin to be hydrolyzed to ADP resulting in the destabilization of actin. [18]

Tropomyosin binding

F-actin binds the protein Tropomyosin and actin depolymerizing factor competitively and mutually exclusively. F-actin binding of Tropomyosin is uncooperative so therefore the binding of Tropomyosin does not induce a conformational change in F-actin and does not cause it to become destabilized. [17] However, because F-actin cannot bind both Tropomyosin and actin depolymerizing factor at the same time due to Tropomyosin blocking the binding site of actin depolymerizing factor when it is bound to actin, Tropomyosin acts as a protector of actin against depolymerization. [19]

Related Research Articles

Microfilament

Microfilaments, also called actin filaments, are protein filaments in the cytoplasm of eukaryotic cells that form part of the cytoskeleton. They are primarily composed of polymers of actin, but are modified by and interact with numerous other proteins in the cell. Microfilaments are usually about 7 nm in diameter and made up of two strands of actin. Microfilament functions include cytokinesis, amoeboid movement, cell motility, changes in cell shape, endocytosis and exocytosis, cell contractility, and mechanical stability. Microfilaments are flexible and relatively strong, resisting buckling by multi-piconewton compressive forces and filament fracture by nanonewton tensile forces. In inducing cell motility, one end of the actin filament elongates while the other end contracts, presumably by myosin II molecular motors. Additionally, they function as part of actomyosin-driven contractile molecular motors, wherein the thin filaments serve as tensile platforms for myosin's ATP-dependent pulling action in muscle contraction and pseudopod advancement. Microfilaments have a tough, flexible framework which helps the cell in movement.

Myofibril Contractile element of muscle

A myofibril is a basic rod-like organelle of a muscle cell. Muscles are composed of tubular cells called myocytes, known as muscle fibres in striated muscle, and these cells in turn contain many chains of myofibrils. They are created during embryonic development in a process known as myogenesis.

Actin Family of proteins

Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of over 100 μM; its mass is roughly 42 kDa, with a diameter of 4 to 7 nm.

Phalloidin Chemical compound

Phalloidin belongs to a class of toxins called phallotoxins, which are found in the death cap mushroom (Amanita phalloides). It is a rigid bicyclic heptapeptide that is lethal after a few days when injected into the bloodstream. The major symptom of phalloidin poisoning is acute hunger due to the destruction of liver cells. It functions by binding and stabilizing filamentous actin (F-actin) and effectively prevents the depolymerization of actin fibers. Due to its tight and selective binding to F-actin, derivatives of phalloidin containing fluorescent tags are used widely in microscopy to visualize F-actin in biomedical research.

Tropomyosin Protein

Tropomyosin is a two-stranded alpha-helical, coiled coil protein found in actin-based cytoskeletons.

Actin-binding proteins are proteins that bind to actin. This may mean ability to bind actin monomers, or polymers, or both.

Profilin

Profilin is an actin-binding protein involved in the dynamic turnover and reconstruction of the actin cytoskeleton. It is found in all eukaryotic organisms in most cells. Profilin is important for spatially and temporally controlled growth of actin microfilaments, which is an essential process in cellular locomotion and cell shape changes. This restructuring of the actin cytoskeleton is essential for processes such as organ development, wound healing, and the hunting down of infectious intruders by cells of the immune system.

Gelsolin (cellular)

Gelsolin is an actin-binding protein that is a key regulator of actin filament assembly and disassembly. Gelsolin is one of the most potent members of the actin-severing gelsolin/villin superfamily, as it severs with nearly 100% efficiency.

Treadmilling Biomolecular phenomenon

Treadmilling is a phenomenon observed in many cellular cytoskeletal filaments, especially in actin filaments and microtubules. It occurs when one end of a filament grows in length while the other end shrinks resulting in a section of filament seemingly "moving" across a stratum or the cytosol. This is due to the constant removal of the protein subunits from these filaments at one end of the filament while protein subunits are constantly added at the other end. Treadmilling was discovered by Wegner, who defined the thermodynamic and kinetic constraints. Wegner recognized that: “The equilibrium constant (K) for association of a monomer with a polymer is the same at both ends, since the addition of a monomer to each end leads to the same polymer.”; a simple reversible polymer can’t treadmill; ATP hydrolysis is required. GTP is hydrolyzed for microtubule treadmilling.

Cofilin 1

Cofilin 1 , also known as CFL1, is a human gene, part of the ADF/cofilin family.

Destrin

Destrin or DSTN is a protein which in humans is encoded by the DSTN gene. Destrin is a component protein in microfilaments.

ParM is a prokaryotic actin homologue which provides the force to drive copies of the R1 plasmid to opposite ends of rod shaped bacteria before cytokinesis.

Cofilin-2

Cofilin 2 (muscle) also known as CFL2 is a protein which in humans is encoded by the CFL2 gene.

Cordon-bleu protein

Protein cordon-bleu is a protein that in humans is encoded by the COBL gene.

Actin assembly-inducing protein

The Actin assembly-inducing protein (ActA) is a protein encoded and used by Listeria monocytogenes to propel itself through a mammalian host cell. ActA is a bacterial surface protein comprising a membrane-spanning region. In a mammalian cell the bacterial ActA interacts with the Arp2/3 complex and actin monomers to induce actin polymerization on the bacterial surface generating an actin comet tail. The gene encoding ActA is named actA or prtB.

Actin remodeling is the biochemical process that allows for the dynamic alterations of cellular organization. The remodeling of actin filaments occurs in a cyclic pattern on cell surfaces and exists as a fundamental aspect to cellular life. During the remodeling process, actin monomers polymerize in response to signaling cascades that stem from environmental cues. The cell's signaling pathways cause actin to affect intracellular organization of the cytoskeleton and often consequently, the cell membrane. Again triggered by environmental conditions, actin filaments break back down into monomers and the cycle is completed. Actin-binding proteins (ABPs) aid in the transformation of actin filaments throughout the actin remodeling process. These proteins account for the diverse structure and changes in shape of Eukaryotic cells. Despite its complexity, actin remodeling may result in complete cytoskeletal reorganization in under a minute.

Rho-associated protein kinase

Rho-associated protein kinase (ROCK) is a kinase belonging to the AGC family of serine-threonine specific protein kinases. It is involved mainly in regulating the shape and movement of cells by acting on the cytoskeleton.

Arp2/3 complex Macromolecular complex

Arp2/3 complex is a seven-subunit protein complex that plays a major role in the regulation of the actin cytoskeleton. It is a major component of the actin cytoskeleton and is found in most actin cytoskeleton-containing eukaryotic cells. Two of its subunits, the Actin-Related Proteins ARP2 and ARP3, closely resemble the structure of monomeric actin and serve as nucleation sites for new actin filaments. The complex binds to the sides of existing ("mother") filaments and initiates growth of a new ("daughter") filament at a distinctive 70 degree angle from the mother. Branched actin networks are created as a result of this nucleation of new filaments. The regulation of rearrangements of the actin cytoskeleton is important for processes like cell locomotion, phagocytosis, and intracellular motility of lipid vesicles.

Cyclase-associated protein family

In molecular biology, the cyclase-associated protein family (CAP) is a family of highly conserved actin-binding proteins present in a wide range of organisms including yeast, flies, plants, and mammals. CAPs are multifunctional proteins that contain several structural domains. CAP is involved in species-specific signalling pathways. In Drosophila, CAP functions in Hedgehog-mediated eye development and in establishing oocyte polarity. In Dictyostelium discoideum, CAP is involved in microfilament reorganisation near the plasma membrane in a PIP2-regulated manner and is required to perpetuate the cAMP relay signal to organise fruitbody formation. In plants, CAP is involved in plant signalling pathways required for co-ordinated organ expansion. In yeast, CAP is involved in adenylate cyclase activation, as well as in vesicle trafficking and endocytosis. In both yeast and mammals, CAPs appear to be involved in recycling G-actin monomers from ADF/cofilins for subsequent rounds of filament assembly. In mammals, there are two different CAPs that share 64% amino acid identity.

ADF-H domain

In molecular biology, ADF-H domain is an approximately 150 amino acid motif that is present in three phylogenetically distinct classes of eukaryotic actin-binding proteins.

References

  1. Actin+Depolymerizing+Factors at the US National Library of Medicine Medical Subject Headings (MeSH)
  2. 1 2 3 Dominguez R, Holmes KC (2011). "Actin structure and function". Annual Review of Biophysics. 40: 169–86. doi:10.1146/annurev-biophys-042910-155359. PMC   3130349 . PMID   21314430.
  3. Menon S, Gupton SL (2016-01-01). "Building Blocks of Functioning Brain: Cytoskeletal Dynamics in Neuronal Development". International Review of Cell and Molecular Biology. 322: 183–245. doi:10.1016/bs.ircmb.2015.10.002. ISBN   9780128048092. PMC   4809367 . PMID   26940519.
  4. 1 2 3 4 Cooper, G. M. and R. E. Hausman. The Cell: A Molecular Approach, 3rd ed. Washington DC: ASM Press 2004 pp.436-440.
  5. Gunning PW, Ghoshdastider U, Whitaker S, Popp D, Robinson RC (2015). "The evolution of compositionally and functionally distinct actin filaments". Journal of Cell Science. 128 (11): 2009–19. doi: 10.1242/jcs.165563 . PMID   25788699.
  6. 1 2 3 4 McGough A, Pope B, Chiu W, Weeds A (August 1997). "Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function". J. Cell Biol. 138 (4): 771–81. doi:10.1083/jcb.138.4.771. PMC   2138052 . PMID   9265645.
  7. 1 2 Lappalainen P, Drubin DG (July 1997). "Cofilin promotes rapid actin filament turnover in vivo". Nature. 388 (6637): 78–82. Bibcode:1997Natur.388R..78L. doi:10.1038/40418. PMID   9214506. S2CID   205027806.
  8. 1 2 3 4 5 6 Inada N (March 2017). "Plant actin depolymerizing factor: actin microfilament disassembly and more". Journal of Plant Research. 130 (2): 227–238. doi:10.1007/s10265-016-0899-8. PMC   5897475 . PMID   28044231.
  9. Paavilainen VO, Oksanen E, Goldman A, Lappalainen P (July 2008). "Structure of the actin-depolymerizing factor homology domain in complex with actin". The Journal of Cell Biology. 182 (1): 51–9. doi:10.1083/jcb.200803100. PMC   2447895 . PMID   18625842.
  10. Bamburg, JR; Harris, HE; Weeds, AG (17 November 1980). "Partial purification and characterization of an actin depolymerizing factor from brain". FEBS Lett. 121 (1): 178–82. doi: 10.1016/0014-5793(80)81292-0 . PMID   6893966. S2CID   42641895.
  11. Ichetovkin I, Han J, Pang KM, Knecht DA, Condeelis JS (April 2000). "Actin filaments are severed by both native and recombinant dictyostelium cofilin but to different extents". Cell Motil. Cytoskeleton. 45 (4): 293–306. doi:10.1002/(SICI)1097-0169(200004)45:4<293::AID-CM5>3.0.CO;2-1. PMID   10744862.
  12. 1 2 3 Carlier MF, Laurent V, Santolini J, et al. (March 1997). "Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility". J. Cell Biol. 136 (6): 1307–22. doi:10.1083/jcb.136.6.1307. PMC   2132522 . PMID   9087445.
  13. 1 2 Ichetovkin I, Grant W, Condeelis J (January 2002). "Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex". Curr. Biol. 12 (1): 79–84. doi: 10.1016/s0960-9822(01)00629-7 . PMID   11790308. S2CID   15747359.
  14. 1 2 Svitkina TM, Borisy GG (May 1999). "Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia". J. Cell Biol. 145 (5): 1009–26. doi:10.1083/jcb.145.5.1009. PMC   2133125 . PMID   10352018.
  15. "How do actin filaments depolymerize?". MBInfo. Retrieved 2018-06-16.
  16. Prunier C, Prudent R, Kapur R, Sadoul K, Lafanechère L (June 2017). "LIM kinases: cofilin and beyond". Oncotarget. 8 (25): 41749–41763. doi:10.18632/oncotarget.16978. PMC   5522193 . PMID   28445157.
  17. 1 2 Bamburg JR, McGough A, Ono S (September 1999). "Putting a new twist on actin: ADF/cofilins modulate actin dynamics". Trends in Cell Biology. 9 (9): 364–70. doi:10.1016/S0962-8924(99)01619-0. PMID   10461190.
  18. Pope BJ, Zierler-Gould KM, Kühne R, Weeds AG, Ball LJ (February 2004). "Solution structure of human cofilin: actin binding, pH sensitivity, and relationship to actin-depolymerizing factor". The Journal of Biological Chemistry. 279 (6): 4840–8. doi: 10.1074/jbc.M310148200 . PMID   14627701.
  19. Bernstein BW, Bamburg JR (1982). "Tropomyosin binding to F-actin protects the F-actin from disassembly by brain actin-depolymerizing factor (ADF)". Cell Motility. 2 (1): 1–8. doi:10.1002/cm.970020102. PMID   6890875.

See also