This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations .(October 2025) |
This article relies largely or entirely on a single source .(October 2025) |
ALOPEX (an abbreviation of "algorithms of pattern extraction") is a correlation based machine learning algorithm first proposed by Tzanakou and Harth in 1974.
In machine learning, the goal is to train a system to minimize a cost function or (referring to ALOPEX) a response function. Many training algorithms, such as backpropagation, have an inherent susceptibility to getting "stuck" in local minima or maxima of the response function. ALOPEX uses a cross-correlation of differences and a stochastic process to overcome this in an attempt to reach the absolute minimum (or maximum) of the response function.
ALOPEX, in its simplest form is defined by an updating equation:
where:
Essentially, ALOPEX changes each system variable based on a product of: the previous change in the variable , the resulting change in the cost function , and the learning rate parameter . Further, to find the absolute minimum (or maximum), the stochastic process (Gaussian or other) is added to stochastically "push" the algorithm out of any local minima.