AN/APQ-153

Last updated
AN/APQ-153 ROKAF F-5E(Cut Model) APQ-153 Rader at Jeju Aerospace Museum June 6, 2014 a.JPG
AN/APQ-153

The Emerson Electric AN/APQ-153 was an I band radar system developed for the Northrop F-5E fighter aircraft. Required to fit into the tight confines of the originally radar-less F-5, the system offered relatively simple air-to-air modes and a short detection range. The AN/APQ-157 was a similar system with dual displays and controls for the twin-seat F-5F trainer. Many of the F-5s still flying have been upgraded to the improved AN/APQ-159.

The APQ-153 was a relatively simple Pulse-Doppler radar intended to improve gunnery on the F-5. It offered four modes of operation; AA1 and AA2 air-to-air target search at different ranges, "dogfight" which locked onto the closest target and offered ranging and gun cueing, and finally a missile bore-sight cueing mode that calculated the engagement envelope of the AIM-9 Sidewinder and gave the pilot directional cues to help them fly into the envelope.

The antenna was necessarily small, a 12 by 16 inches (30 cm × 41 cm) parabolic dish that was stabilized to account for maneuvering. This was connected to a small 5-inch (13 cm) B-Scope display in the cockpit.

See also

Related Research Articles

<span class="mw-page-title-main">AIM-7 Sparrow</span> Medium-range, semi-active radar homing air-to-air missile

The AIM-7 Sparrow is an American medium-range semi-active radar homing air-to-air missile operated by the United States Air Force, United States Navy, United States Marine Corps, and various other air forces and navies. Sparrow and its derivatives were the West's principal beyond visual range (BVR) air-to-air missile from the late 1950s until the 1990s. It remains in service, although it is being phased out in aviation applications in favor of the more advanced AIM-120 AMRAAM.

<span class="mw-page-title-main">Grumman A-6 Intruder</span> 1960 attack strike aircraft family by Grumman

The Grumman A-6 Intruder is an American twinjet all-weather attack aircraft developed and manufactured by American aircraft company Grumman Aerospace and formerly operated by the U.S. Navy and U.S. Marine Corps.

<span class="mw-page-title-main">RIM-7 Sea Sparrow</span> US ship-borne short-range air defense missile system

The RIM-7 Sea Sparrow is a U.S. ship-borne short-range anti-aircraft and anti-missile weapon system, primarily intended for defense against anti-ship missiles. The system was developed in the early 1960s from the AIM-7 Sparrow air-to-air missile as a lightweight "point-defense" weapon that could be retrofitted to existing ships as quickly as possible, often in place of existing gun-based anti-aircraft weapons. In this incarnation, it was a very simple system guided by a manually aimed radar illuminator.

The Medium Extended Air Defense System (MEADS) is a ground-mobile air and missile defense system intended to replace the Patriot missile system through a NATO-managed development. The program is a development of the United States, Germany and Italy.

<span class="mw-page-title-main">Douglas F6D Missileer</span> Proposed US Navy fighter jet

The Douglas F6D Missileer was a proposed carrier-based fleet defense fighter designed by Douglas Aircraft Company in response to a 1959 United States Navy requirement. It was designed to be able to loiter for extended periods at a relatively long distance from the Navy's aircraft carriers, engaging hostile aircraft 100 miles (160 km) away with its powerful radar and long-range missiles. Since the enemy would be fired on long before they reached visual range, the aircraft had little dogfighting capability and was strictly subsonic. When doubts were expressed about the Missileer's ability to defend itself after firing its missiles, the value of the project was questioned, leading to its cancellation. Some of the Missileer's systems, primarily the engines, radar, and missiles, continued development in spite of the cancellation, eventually emerging on the ill-fated General Dynamics–Grumman F-111B and successful Grumman F-14 Tomcat years later.

<span class="mw-page-title-main">AN/APG-66</span> Targeting radar designed for the F-16 aircraft

The AN/APG-66 radar is an X-band solid state medium range pulse-Doppler planar array radar originally designed by the Westinghouse Electric Corporation for use in early generations of the F-16 Fighting Falcon. Later F-16 variants use the AN/APG-68 or the AN/APG-83. This radar was employed in all domestic and export versions of the F-16A/B models throughout the production. Subsequent upgrades have been installed in many varying aircraft types including the U.S. Customs and Border Protection's C-550 Cessna Citation, US Navy P-3 Orion, and Piper PA-42 Cheyenne II's.

<span class="mw-page-title-main">AN/APG-63 radar family</span> Military aircraft all-weather multimode radar family

The AN/APG-63 and AN/APG-70 are a family of all-weather multimode radar systems designed by Hughes Aircraft for the F-15 Eagle air superiority fighter. These X band pulse-Doppler radar systems are designed for both air-air and air-ground missions; they are able to look up at high-flying targets and down at low-flying targets without being confused by ground clutter. The systems can detect and track aircraft and small high-speed targets at distances beyond visual range down to close range, and at altitudes down to treetop level. The radar feeds target information into the aircraft's central computer for effective weapons delivery. For close-in dogfights, the radar automatically acquires enemy aircraft and projects this information onto the cockpit head-up display. The name is assigned from the Army Navy Joint Electronics Type Designation System.

<span class="mw-page-title-main">AN/APG-68</span> Radar system

The AN/APG-68 radar is a long range Pulse-doppler radar designed by Westinghouse to replace AN/APG-66 radar in the F-16 Fighting Falcon. After years of Service, AN/APG-68 radar currently being replaced on US Air Force F-16C/D Block 40/42 and 50/52 by the latest generation AN/APG-83 AESA radar.

<span class="mw-page-title-main">AN/AWG-9</span> X band pulse-Doppler military aircraft radar

The AN/AWG-9 and AN/APG-71 radars are all-weather, multi-mode X band pulse-Doppler radar systems used in the F-14 Tomcat, and also tested on TA-3B. It is a long-range air-to-air system capable of guiding several AIM-54 Phoenix or AIM-120 AMRAAM missiles simultaneously, using its track while scan mode. The AWG-9 utilizes an analog computer while the APG-71 is an upgraded variant utilizing a digital computer. Both the AWG-9 and APG-71 were designed and manufactured by Hughes Aircraft Company's Radar Systems Group in Los Angeles; contractor support was later assumed by Raytheon. The AWG-9 was originally created for the canceled Navy F-111B program.

AN/APQ-116 is one of the most numerous terrain-following radars (TFRs) produced in the world, and with over 500 units built, it was a member of a family of TFRs consisted of nearly two dozen models, all of which are based on the same general design principle. First developed by Texas Instruments, and later produced by Raytheon when the latter purchased the radar business of the former.

The AN/APG-76 radar is a pulse Doppler Ku band multi-mode radar developed and manufactured by Northrop Grumman.

Track-while-scan (TWS) is a mode of radar operation in which the radar allocates part of its power to tracking a target or targets while part of its power is allocated to scanning. It is similar to but functions differently in comparison to its counterparts range-while-search (RWS), long range search (LRS), air combat mode (ACM), velocity search with ranging (VSR) and combined radar mode (CRM). In track-while-scan mode the radar has the ability to acquire and lock/track multiple targets while simultaneously providing a view of the surrounding airspace, which in turn aids the pilot and or operator in maintaining better situational awareness.

The Emerson Electric AN/APQ-159 was an I band/J band radar designed to upgrade Emerson's simple AN/APQ-153 used in the Northrop F-5. It offered roughly double the range, increased off-boresight tracking angles, and considerably improved reliability. Originally intended to be replaced by the further improved AN/APQ-167, modernized F-5s have typically moved to the entirely new AN/APG-69 instead.

Emerson Electric's AN/APG-69 is an X band coherent pulse doppler radar originally designed for the F-20 Tigershark aircraft. It is the successor to the AN/APQ-159. Northrop skipped over the APG-69 for the F-20, choosing the General Electric AN/APG-67 instead. The APG-69 was still used by other F-5 operators, and other light fighter projects, including the ALR Piranha.

The AN/APG-67 is a multi-mode all-digital X band coherent pulse doppler radar originally developed by General Electric for the Northrop F-20 Tigershark program of the early 1980s. It offers a variety of air-to-air, air-to-ground, sea-search and mapping modes, and compatibility with most weapons used by the US Air Force in the 1980s.

<span class="mw-page-title-main">AN/APQ-120</span> Aircraft fire control radar

The AN/APQ-120 was an aircraft fire control radar (FCR) manufactured by Westinghouse for the McDonnell Douglas F-4E Phantom II. AN/APQ-120 has a long line of lineage, with its origin traced all the way back to Aero-13 FCR developed by the same company in the early 1950s. A total of half a dozen FCRs were tested and evaluated on the first 18 F-4s built, but they were soon replaced by later radars produced in great numbers, including AN/APQ-120.

<span class="mw-page-title-main">Aircraft interception radar</span>

Aircraft interception radar, or AI radar for short, is a British term for radar systems used to equip aircraft with the means to find and track other flying aircraft. These radars are used primarily by Royal Air Force (RAF) and Fleet Air Arm night fighters and interceptors for locating and tracking other aircraft, although most AI radars could also be used in a number of secondary roles as well. The term was sometimes used generically for similar radars used in other countries, notably the US. AI radar stands in contrast with ASV radar, whose goal is to detect ships and other sea-suface vessels, rather than aircraft; both AI and ASV are often designed for airborne use.