AN/FPS-124

Last updated
AN/FPS-124
Country of origin United States
IntroducedLate 1970s
TypeShort-range radar system
Frequency1215 to 1400 MHz (D/L)
Range70 mi (110 km)
Altitude15,000 m (49,000 ft)

The AN/FPS-124 is an unattended radar (UAR) providing short range, Doppler radar surveillance of airborne targets. It provides target information to the Regional Operations Control Center (ROCC), and employs built-in-test, performance monitoring/fault isolation and system redundancy enabling it to reconfigure itself when fault detection occurs. [1]

The AN/FPS-117 and AN/FPS-124 form an array of radars stretching across North America from Alaska, United States to Labrador, Canada. This North Warning System is designed to provide long-range detection and coverage for drug interdiction support and tactical command and control. Implementation of the North Warning System has resulted in a reduction in Operations and Maintenance (O&M) spending by up to 50% compared to previous systems.

Due to extreme northern locations of some of these radars, the physics of radiowave propagation in the 1215–1400 MHz frequency range is even more critical for target detection requirements. The AN/FPS-124 is intended to cover any surveillance gaps left by the North Warning System's long range radar, the AN/FPS-117.

Classification of radar systems

Under the Joint Electronics Type Designation System (JETDS), all U.S. military radar and tracking systems are assigned a unique identifying alphanumeric designation. The letters “AN” (for Army-Navy) are placed ahead of a three-letter code. [2]

Thus, the AN/FPS-124 represents the 124th design of an Army-Navy “Fixed, Radar, Search” electronic device. [2] [3]

Related Research Articles

<span class="mw-page-title-main">WSR-57</span> Weather radar used by the U.S. Weather Bureau

WSR-57 radars were the USA's main weather surveillance radar for over 35 years. The National Weather Service operated a network of this model radar across the country, watching for severe weather.

<span class="mw-page-title-main">Cobra Dane</span> US radar installation for monitoring Soviet missile tests

The AN/FPS-108 COBRA DANE is a PESA phased array radar installation operated by Raytheon for the United States Space Force at Eareckson Air Station on the island of Shemya, Aleutian Islands, Alaska. The system was built in 1976 and brought online in 1977 for the primary mission of gathering intelligence about Russia's ICBM program in support of verification of the SALT II arms limitation treaty. Its single face 29 m (95 ft) diameter phased array radar antenna 52.7373°N 174.0914°E faces the Kamchatka Peninsula and Russia's Kura Test Range. COBRA DANE operates in the 1215–1400 MHz band.

<span class="mw-page-title-main">AN/FPS-117</span> L-band AESA 3D air search radar

The AN/FPS-117 is an L-band active electronically scanned array (AESA) 3-dimensional air search radar first produced by GE Aerospace in 1980 and now part of Lockheed Martin. The system offers instrumented detection at ranges on the order of 200 to 250 nautical miles and has a wide variety of interference and clutter rejection systems.

The AN/FPS-35 frequency diversity radar was a long range search radar used in the early 1960s. It was one of the largest air defense radars ever produced, with its antenna and supporting structure mounted on one of the largest rolling-element bearings in the world.

<span class="mw-page-title-main">General Electric AN/FPS-6 Radar</span> Cold War-era American height finding radar

The AN/FPS-6 Radar was a long-range height finding radar used by the United States Air Force's Air Defense Command. The AN/FPS-6 radar was introduced into service in the late 1950s and served as the principal height-finder radar for the United States for several decades thereafter. It was also used by the Royal Air Force alongside their AMES Type 80s. Built by General Electric, the S-band radar operated on a frequency of 2700 to 2900 MHz. Between 1953 and 1960, about 450 units of the AN/FPS-6 and the mobile AN/MPS-14 version were produced. The AN/FPS-90 and AN/FPS-116 radars were identical to the AN/FPS-6 except for receiver modifications.

<span class="mw-page-title-main">General Electric AN/FPS-7 Radar</span>

The AN/FPS-7 Radar was a Long Range Search Radar used by the United States Air Force Air Defense Command.

<span class="mw-page-title-main">General Electric AN/FPS-8 Radar</span> Cold War-era American air defense radar

The AN/FPS-8 Radar was a Medium-Range Search Radar used by the United States Air Force Air Defense Command.

<span class="mw-page-title-main">Bendix AN/FPS-20</span>

The AN/FPS-20 was a widely used L band early warning and ground-controlled interception radar system employed by the United States Air Force Air Defense Command, the NORAD Pinetree Line in Canada, the USAF CONAD in the continental United States, and a variety of other users. The design started life as the Bendix AN/FPS-3 in 1950, was upgraded to the FPS-20, then spawned over a dozen different variants as additional upgrades were applied. The FPS-20 formed the backbone of the US air defense network through the early Cold War with over 200 units deployed. Most FPS-20 sites were replaced by modern equipment in the late 1960s, although a number were turned over to the FAA, modified for air traffic control use, and became ARSR-60s.

The Avco AN/FPS-26 Radar was an Air Defense Command height finder radar developed in the Frequency Diversity Program with a tunable 3-cavity power klystron for electronic counter-countermeasures (e.g. to counter jamming). Accepted by the Rome Air Development Center on 20 January 1960 for use at SAGE radar stations, the AN/FPS-26 processed height-finder requests (e.g., from Air Defense Direction Centers) by positioning to the azimuth of a target aircraft using a high-pressure hydraulic drive, then "nodding" in either a default automatic mode or by operator command. The inflatable radome required a minimum pressure to prevent contact with the antenna which would result in damage to both (technicians accessed the antenna deck via an air lock.) To maintain high dielectric strength, the waveguide was pressurized with sulfur hexafluoride (SF6), which technicians were warned would produce deadly fluorine if waveguide arcing occurred.

<span class="mw-page-title-main">Westinghouse AN/FPS-27 Radar</span> Cold War-era American air search radar

The AN/FPS-27 Radar was a long-range search radar used by the United States Air Force Air Defense Command.

<span class="mw-page-title-main">Joint Surveillance System</span> System for air defense of North America

The Joint Surveillance System (JSS) is a joint United States Air Force and Federal Aviation Administration system for the atmospheric air defense of North America. It replaced the Semi Automatic Ground Environment (SAGE) system in 1983.

<span class="mw-page-title-main">RCA AN/FPS-4 radar</span>

The AN/FPS-4 Radar was a Height-Finder Radar used by the United States Air Force Air Defense Command.

<span class="mw-page-title-main">Bendix AN/FPS-14 Radar</span>

The AN/FPS-14 was a medium-range search Radar used by the United States Air Force Air Defense Command.

The AN/FPS-18 was a medium-range search Radar used by the United States Air Force Air Defense Command.

<span class="mw-page-title-main">General Electric AN/CPS-6 Radar</span> 1940s American air defense radar

The AN/CPS-6 was a medium-range search/height finder Radar used by the United States Air Force Air Defense Command.

The AN/FPS-5 was a nodding height-finding radar used by the United States Air Force Air Defense Command. It was unique in that it used a fixed reflector and a moving feed in order to steer the beam. It was produced in the early 1950s by Hazeltine, and deployment was limited. It was normally used with the AN/FPS-3 search radar.

<span class="mw-page-title-main">AN/FPS-19</span>

The AN/FPS-19 was a long-range search radar developed for the NORAD Distant Early Warning Line by Raytheon. It was an L-band system working between 1220 and 1350 MHz produced by a 500 kW magnetron. Two such systems were placed back-to-back, one with an antenna that produced a narrow beam to improve range for long-range detection, and the second with a wider fan-shaped beam to cover higher angles at shorter ranges. The former could detect bomber-sized targets to about 160 miles (260 km) and the latter covered up to 65,000 ft (20,000 m) altitude.

The Bendix AN/FPS-30 was a long-range search radar deployed at Distant Early Warning Line sites in Greenland. It was an advancement over the AN/FPS-19 radars deployed in Alaska and Canada, being optimized for use in severe Arctic conditions. It was planned as a replacement, however cost constraints led to it only being installed at the Greenland DYE sites.

<span class="mw-page-title-main">AN/FPS-23</span>

The Motorola AN/FPS-23 was a short-range early warning radar deployed on the Distant Early Warning Line. It was used as a "gap filler", looking for aircraft attempting to sneak by the DEW line by flying between the main AN/FPS-19 stations at low altitude. It could detect aircraft flying at 200 feet over land or 50 feet over water. The system was known as Fluttar during its development at the Lincoln Laboratory, and this name was widely used for the production units as well. It was also sometimes known as "Type F".

<span class="mw-page-title-main">Solid State Phased Array Radar System</span>

The Solid State Phased Array Radar System is a United States Space Force radar, computer, and communications system for missile warning and space surveillance "at five (5) geographically separated units worldwide including Beale Air Force Base, CA, Cape Cod Space Force Station, MA, Clear Space Force Station, AK, RAF Fylingdales, UK, and Pituffik Space Base, Greenland." SSPARS completed replacement of the RCA 474L Ballistic Missile Early Warning System when the last SSPAR was operational at Clear in 2001, the year SSPARS equipment included:

References

  1. Federation of American Scientists. "AN/FPS-124 Unattended Radar SEEK FROST North Warning System" . Retrieved 2013-10-13.
  2. 1 2 Avionics Department (2013). "Missile and Electronic Equipment Designations". Electronic Warfare and Radar Systems Engineering Handbook (PDF) (4 ed.). Point Mugu, California: Naval Air Warfare Center Weapons Division. p. 2-8.1.
  3. Winkler, David F. (1997). "Radar Systems Classification Methods". Searching the Skies: The Legacy of the United States Cold War Defense Radar Program (PDF). Langley AFB, Virginia: United States Air Force Headquarters Air Combat Command. p. 73. LCCN   97020912.