AN/TPS-80 Ground/Air Task Oriented Radar

Last updated
AN/TPS-80 Ground/Air Task Oriented Radar
USMC-16064.jpg
Ground/Air Task Oriented Radar (G/ATOR) prototype at Marine Corps Base Quantico, September 2010
Country of origin United States
Introduced2018 (Planned)
TypeShort/Medium Range Multi-Role Radar System
Frequency2–4 GHz
Other NamesG/ATOR

The AN/TPS-80 Ground/Air Task Oriented Radar (G/ATOR) is the United States Marine Corps next-generation Air Surveillance/Air Defense and Air Traffic Control (ATC) Radar. The mobile active electronically scanned array radar system is currently being developed by Northrop Grumman and was expected to reach initial operating capability in August 2016. [1]

Contents

Mission and description

The Ground/Air Task Oriented Radar (G/ATOR) is a single material solution for the mobile Multi-Role Radar System and Ground Weapons Locating Radar (GWLR) requirements. It is a three-dimensional, short/medium-range multi-role radar designed to detect unmanned aerial systems, cruise missiles, air-breathing targets, rockets, artillery, and mortars. G/ATOR is designed to satisfy the warfighter's expeditionary needs across the Marine Air-Ground Task Force spectrum, replacing five legacy radar systems with a single solution. [2] The five Marine Corps legacy radar systems being replaced by this multi-function capability include: the AN/TPS-63 (air defense), AN/TPS-73 (air-traffic control), AN/MPQ-62 (short-range air defense), AN/TPQ-46 (counter-fire target acquisition) and UPS-3 (target tracking). [3] Additionally, it will augment the AN/TPS-59 long-range radar. [4]

The Program Executive Office (PEO), Land Systems Marine Corps is executing the G/ATOR program as an evolutionary acquisition program consisting of four capabilities, referred to as blocks. [4]

G/ATOR System Configuration GATOR.png
G/ATOR System Configuration

G/ATOR provides real-time radar measurement data to the Tactical Air Operations Module, Common Aviation Command and Control System (CAC2S), Composite Tracking Network, and Advanced Field Artillery Tactical Data System. [5]

The G/ATOR baseline system configuration consists of three subsystems: [4]

Development

AN/TPS-80 Ground/Air Task Oriented Radar at Marine Corps Air Station Yuma

Development of the G/ATOR began in September 2005 when the Marine Corps awarded a $7.9 million contract to Northrop Grumman Electronic Systems. Initial design requirements required planning for short-range air surveillance, counter-battery fire and target acquisition, and sensor networking. The requirement also required Block 1 to allow for incremental implementation of the following blocks without equipment or software redesign. [5]

In 2009, a $14 million cost overrun for the G/ATOR, was attributed to requirements creep and the increasing cost of scarce materials required in advanced electronic components. In 2012 the Marine Corps and Northrop Grumman began Block 2 development, beginning with upgrading the Block 1 equipment and software for performing GWLR requirements. [5] [6]

The G/ATOR program obtained a successful Milestone C decision in March 2014. In October 2014, a 207.3 million dollar low rate initial production (LRIP) contract was awarded to Northrop Grumman for the first lot of four systems. [5] [7] In March 2015, another contract worth $113 million was awarded to produce two additional systems to be delivered in October 2017. [6] [8]

In September 2015, the Marine Corps awarded Northrop Grumman a $58.7 million contract to incorporate and test the GWLR mode for the G/ATOR. [9]

In September 2016, the Marine Corps awarded Northrop Grumman a $375 million contract for nine additional LRIP systems that will incorporate gallium nitride (GaN) technology. [10]

On June 10, 2019, the Marine Corps awarded Northrop Grumman a $958 million contract for full-rate production of 30 GaN G/ATOR Systems. [11]

A total of 57 G/ATOR systems are planned for procurement. [1] [4]

On December 6, 2019, the Marine Corps awarded Northrop Grumman a $188 million contract for the firm-fixed-price portion of a previously awarded contract (M67854-19-C-0043). This modification is for the purchase of six Gallium Nitride full-rate-production systems and associated travel in support of Program Executive Officer Land Systems, Quantico, Virginia. [12]

Saab is subcontracted by Northrop Grumman Corporation and has delivered major subsystems and assemblies as well as software since Lot1 and has been part of the development since originally contracted in 2007. [13] [14] [15] [16] [17]

Main characteristics

Nomenclature

Per the Joint Electronics Type Designation System (JETDS), the nomenclature AN/TPS-80 is thus derived:

See also

Related Research Articles

<span class="mw-page-title-main">AGM-88 HARM</span> U.S. high-speed air-to-surface anti-radiation missile

The AGM-88 HARM is a tactical, air-to-surface anti-radiation missile designed to home in on electronic transmissions coming from surface-to-air radar systems. It was originally developed by Texas Instruments as a replacement for the AGM-45 Shrike and AGM-78 Standard ARM system. Production was later taken over by Raytheon Corporation when it purchased the defense production business of Texas Instruments.

<span class="mw-page-title-main">Northrop Grumman RQ-4 Global Hawk</span> Unmanned surveillance aircraft

The Northrop Grumman RQ-4 Global Hawk is a high-altitude, remotely-piloted surveillance aircraft introduced in 2001. It was initially designed by Ryan Aeronautical, and known as Tier II+ during development. The RQ-4 provides a broad overview and systematic surveillance using high-resolution synthetic aperture radar (SAR) and electro-optical/infrared (EO/IR) sensors with long loiter times over target areas. It can survey as much as 40,000 square miles (100,000 km2) of terrain per day, an area the size of South Korea or Iceland.

<span class="mw-page-title-main">Surveillance aircraft</span> Aircraft designed for sustained observation over time by onboard persons or sensors

A surveillance aircraft is an aircraft used for surveillance. They are operated by military forces and other government agencies in roles such as intelligence gathering, battlefield surveillance, airspace surveillance, reconnaissance, observation, border patrol and fishery protection. This article concentrates on aircraft used in those roles, rather than for traffic monitoring, law enforcement and similar activities.

<span class="mw-page-title-main">Northrop Grumman</span> Aerospace and defense technology corporation

Northrop Grumman Corporation is an American multinational aerospace and defense technology company. With 95,000 employees and an annual revenue in excess of $30 billion, it is one of the world's largest weapons manufacturers and military technology providers. The firm ranked No. 101 on the 2022 Fortune 500 list of America's largest corporations.

<span class="mw-page-title-main">Raytheon</span> Defunct American industrial corporation (1922–2020)

The Raytheon Company was a major U.S. defense contractor and industrial corporation with manufacturing concentrations in weapons and military and commercial electronics. It was previously involved in corporate and special-mission aircraft until early 2007. Raytheon was the world's largest producer of guided missiles. In April 2020, the company merged with United Technologies Corporation to form Raytheon Technologies, which, since July 2023, is known as RTX Corporation.

<span class="mw-page-title-main">Boeing E-7 Wedgetail</span> Airborne early warning and control aircraft

The Boeing E-7 Wedgetail is a twin-engine airborne early warning and control aircraft based on the Boeing 737 Next Generation design. It is lighter than the 707-based Boeing E-3 Sentry, and has a fixed, active electronically scanned array radar antenna instead of a rotating one. It was designed for the Royal Australian Air Force (RAAF) under "Project Wedgetail" and designated E-7A Wedgetail.

<span class="mw-page-title-main">Active electronically scanned array</span> Type of phased array radar

An active electronically scanned array (AESA) is a type of phased array antenna, which is a computer-controlled antenna array in which the beam of radio waves can be electronically steered to point in different directions without moving the antenna. In the AESA, each antenna element is connected to a small solid-state transmit/receive module (TRM) under the control of a computer, which performs the functions of a transmitter and/or receiver for the antenna. This contrasts with a passive electronically scanned array (PESA), in which all the antenna elements are connected to a single transmitter and/or receiver through phase shifters under the control of the computer. AESA's main use is in radar, and these are known as active phased array radar (APAR).

<span class="mw-page-title-main">Northrop Grumman MQ-4C Triton</span> Maritime version of RQ-4 Global Hawk

The Northrop Grumman MQ-4C Triton is an American high-altitude long endurance unmanned aerial vehicle (UAV) developed for and flown by the United States Navy as a surveillance aircraft. Together with its associated ground control station, it is an unmanned aircraft system (UAS). Developed under the Broad Area Maritime Surveillance (BAMS) program, the Triton is intended to provide real-time intelligence, surveillance and reconnaissance missions (ISR) over vast ocean and coastal regions, continuous maritime surveillance, conduct search and rescue missions, and to complement the Boeing P-8 Poseidon maritime patrol aircraft.

Northrop Grumman Electronic Systems (NGES) was a business segment of Northrop Grumman from 1996 to 2015 until a reorganization on January 1, 2016, merged other Northrop Grumman businesses into NGES to form a new segment called Mission Systems. NGES had originally been created by Northrop Grumman's acquisition of Westinghouse Electronic Systems Group in 1996. The Electronic Systems sector was a designer, developer, and manufacturer of a wide variety of advanced defense electronics and systems. The division had 120 locations worldwide, including 72 international offices, and approximately 24,000 employees; accounting for 20% of company sales in 2005.

<span class="mw-page-title-main">Space Fence</span> US Space Force space surveillance system

The Space Fence is a second-generation space surveillance system operated by the United States Space Force in order to track artificial satellites and space debris in Earth orbit.

<span class="mw-page-title-main">AN/TPQ-36 Firefinder radar</span> American mobile radar system

Hughes AN/TPQ-36 Firefinder weapon locating system is a mobile radar system developed in the mid-late 1970s by Hughes Aircraft Company and manufactured by Northrop Grumman and ThalesRaytheonSystems, achieving initial operational capability in May 1982. The system is a "weapon-locating radar", designed to detect and track incoming mortar, artillery and rocket fire to determine the point of origin for counter-battery fire. It is currently in service at battalion and higher levels in the United States Army, United States Marine Corps, Australian Army, Portuguese Army, Turkish Army, and the Armed Forces of Ukraine.

<span class="mw-page-title-main">Multi-Platform Radar Technology Insertion Program</span>

The Multi-Platform Radar Technology Insertion Program (MP-RTIP), is a U.S. Air Force project led by contractor Northrop Grumman to develop the next generation of airborne air-to-air and air-to-ground radar systems. While initially planned for multiple platforms, the MP-RTIP is currently intended only for the RQ-4B Global Hawk UAV.

<span class="mw-page-title-main">AN/APG-81</span> Radar system

The AN/APG-81 is an active electronically scanned array (AESA) fire-control radar system designed by Northrop Grumman Electronic Systems for the Lockheed Martin F-35 Lightning II.

<span class="mw-page-title-main">AN/TPQ-53 Quick Reaction Capability Radar</span> Ground radar system

AN/TPQ-53 Quick Reaction Capability Radar is a mobile active electronically scanned array counter-battery radar system manufactured by Lockheed Martin. The radar is specifically designed to locate the firing positions of both rocket and mortar launchers.

The AN/APG-83 Scalable Agile Beam Radar (SABR) is a full-performance active electronically scanned array (AESA) fire control radar for the General Dynamics F-16 Fighting Falcon and other aircraft developed by Northrop Grumman. In a 2013 competition, Lockheed Martin selected SABR as the AESA radar for the F-16 modernization and update programs of the United States Air Force and Republic of China Air Force. 5th Generation Fighter Radar Capability for the 4th Gen Aircraft. The SABR APG-83 is an Active Electronically Scanned Array (AESA) fire control radar.

<span class="mw-page-title-main">T-X program</span> US Air Force advanced trainer acquisition program

The T-X program is a United States Air Force development and acquisition program for a new two-seat jet trainer to replace the Northrop T-38 Talon. On 27 September 2018, the US Air Force selected the Boeing/Saab T-X entry to become its trainer aircraft. The new aircraft was given the designation and name "T-7 Red Hawk" in September 2019. The Air Force's initial plan is to purchase 351 T-7s, and has an option to purchase up to 475.

<span class="mw-page-title-main">TAFLIR</span>

TAFLIR is the abbreviation for the "Tactical Flight Radar" of the Swiss Air Force. TAFLIR is used to improve the Recognized Air Picture and to support air traffic control and air surveillance of the Swiss Air Force.

<span class="mw-page-title-main">AN/TPS-63</span> Mobile radar system

The AN/TPS-63 was a medium range, Two-dimensional, L band radar system utilized by the United States Marine Corps from the early 1980s until finally retired in 2018. This mobile radar was developed by Northrop Grumman and complimented the AN/TPS-59 long range radar by providing 360 degree, gap-filling coverage of low altitude areas. Because it was more mobile, the TPS-63 was also employed as the first radar ashore during amphibious operations until the larger and more capable AN/TPS-59 was established. The TPS-63 was used in combat operations during the Gulf War, the 2003 invasion of Iraq and subsequent operations in Iraq and Afghanistan. The TPS-63 was eventually phased out of service in 2018 as it was replaced by the AN/TPS-80 Ground/Air Task Oriented Radar.

References

PD-icon.svg This article incorporates public domain material from websites or documents of the United States Marine Corps .
PD-icon.svg This article incorporates public domain material from websites or documents of the U.S. Department of Defense .

  1. 1 2 "Selected Acquisition Report (SAR), Ground/Air Task Oriented Radar (G/ATOR)" (PDF). Defense Technical Information Center. Department of Defense. 16 April 2014. Retrieved 21 October 2015.
  2. Gourley, Scott R. (Summer 2012). "Ground-based Air Defense and Ground/Air Task Oriented Radar" (PDF). Program Executive Officer Land Systems. Marine Corps Systems Command. Retrieved 21 October 2015.
  3. Burgess, Richard R. (November 2010). "A Radar for All Missions". Seapower. 53 (11): 42–44. Archived from the original on March 7, 2016. Retrieved 21 October 2015.{{cite journal}}: CS1 maint: unfit URL (link)
  4. 1 2 3 4 "Ground/Air Task Oriented Radar (G/ATOR)" (PDF). The Office of the Director, Operational Test & Evaluation. Director, Operational Test & Evaluation. Retrieved 21 October 2015.
  5. 1 2 3 4 Keller, John (October 24, 2014). "After nine years, Marine Corp finally may have full production of G/ATOR radar in sight". Military Aerospace Electronics Magazine. Retrieved 3 November 2015.
  6. 1 2 Keller, John (March 17, 2015). "Latest order for Marine Corps G/ATOR radar systems brings total number of radars to six". Military Aerospace Electronics Magazine. Retrieved 3 November 2015.
  7. "AN/TPS-80 Ground/Air Task Oriented Radar (G/ATOR)". Marine Corps Concepts and Programs. United States Marine Corps. 18 May 2015. Archived from the original on 4 March 2016. Retrieved 21 October 2015.
  8. Withington, Thomas. "AMR Pulse - Radar". Asian Military Review. Retrieved 21 October 2015.[ permanent dead link ]
  9. "Northrop Grumman Receives Contract to Add Ground Capabilities to AN/TPS-80 Ground/Air Task-Oriented Radar". Globe Newswire. Retrieved 21 October 2015.
  10. "Northrop Grumman Awarded Contract for Nine GaN G/ATOR Systems". Northrop Grumman. Retrieved 11 October 2016.
  11. "Northrop Grumman Awarded Contract to Provide Marine Corps Full-Rate Production G/ATOR Radar Systems". Northrop Grumman. Retrieved 9 August 2019.
  12. "Contracts For Dec. 6, 2019". Department of Defense. Retrieved 7 December 2019.
  13. "Saab to Supply Key Components in Support of the U.S. Marine Corps Ground/Air Task Oriented Radar (G/ATOR) Program". Feb 12, 2015. Archived from the original on 2020-10-31.
  14. "Saab Receives Contract for Components to the U.S. Marine Corps' Ground/Air Task-Oriented Radar Program". Dec 5, 2016. Archived from the original on 2020-10-25.
  15. "Saab Receives Order for Components for the U.S. Marine Corps G/ATOR Radar". Dec 9, 2019. Archived from the original on 2020-10-27.
  16. "Saab receives order for radar system components for the U.S. Marine Corps". Sep 23, 2020. Archived from the original on 2020-10-25.
  17. "Saab får beställning på radarkomponenter till amerikanska marinen" [Saab receives order for radar system components for the U.S. Marine Corps](PDF) (Press release) (in Swedish). Saab AB. Archived (PDF) from the original on 2020-12-25.