ATP synthase alpha/beta subunits

Last updated
ATP synthase alpha/beta family, beta-barrel domain
ATPsynthase.jpg
Simplified model of FOF1-ATPase alias ATP synthase of E. coli. Subunits of the enzyme are labeled accordingly.
Identifiers
SymbolATP-synt_ab_N
Pfam PF02874
InterPro IPR004100
PROSITE PDOC00137
SCOP2 1bmf / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
PDB 1fx0 B:23-95 1kmh B:23-95 1nvz A:6-73

1sky E:6-80 1e1r D:63-129 1bmf D:63-129 1nbm D:63-129 1cow F:63-129 1h8e E:63-129 1efr E:63-129 1h8h F:63-129 1w0k D:63-129 1e1q E:63-129 1w0j E:63-129 1e79 E:63-129 1e16 A:4-70 1e1i A:4-70 1v0i A:26-91

2bn9 A:21-92
ATP synthase alpha/beta family, nucleotide-binding domain
Identifiers
SymbolATP-synt_ab
Pfam PF00006
InterPro IPR000194
PROSITE PDOC00137
SCOP2 1bmf / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
PDB 1jva A:273-746 1gpp A:283-482 1vde A:283-736

1um2 D:273-287 1lwt A:283-736 1dfa A:283-736 1lws A:283-736 1fx0 B:151-372 1kmh B:151-372 1e1i A:126-348 1e16 A:126-348 1e1r D:185-405 1bmf D:185-405 1nbm D:185-405 1cow F:185-405 1h8e E:185-405 1efr E:185-405 1h8h F:185-405 1w0k D:185-405 1e1q E:185-405 1w0j E:185-405 1e79 E:185-405 1sky E:137-351 1nvz A:129-349

1v0i A:147-357 2bn9 A:154-364
ATP synthase alpha/beta chain, C terminal domain
Identifiers
SymbolATP-synt_ab_C
Pfam PF00306
InterPro IPR000793
SCOP2 1bmf / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
PDB 1e79 B:427-531 1w0j B:427-531 1h8e A:427-531

1h8h A:427-531 1efr A:427-531 1bmf B:427-531 1e1q B:427-531 1cow A:427-531 1e1r B:427-531 1w0k B:427-531 1nbm C:427-531 1sky B:376-480 1kmh A:377-495 1fx0 A:377-495 1e16 A:361-454

1e1i A:361-454 1nvz A:362-466
A part of F1 ATP synthase complex: alpha, beta and gamma subunits (PDB: 1bmf ) PBB Protein ATP5B image.jpg
A part of F1 ATP synthase complex: alpha, beta and gamma subunits ( PDB: 1bmf )

The alpha and beta (or A and B) subunits are found in the F1, V1, and A1 complexes of F-, V- and A-ATPases, respectively, as well as flagellar (T3SS) ATPase and the termination factor Rho. The subunits make up a ring that contains the ATP-hydrolyzing (or producing) catalytic core. The F-ATPases (or F1Fo ATPases), V-ATPases (or V1Vo ATPases) and A-ATPases (or A1Ao ATPases) are composed of two linked complexes: the F1, V1 or A1 complex containsthat synthesizes/hydrolyses ATP, and the Fo, Vo or Ao complex that forms the membrane-spanning pore. The F-, V- and A-ATPases all contain rotary motors, one that drives proton translocation across the membrane and one that drives ATP synthesis/hydrolysis. [1] [2]

ATPases (or ATP synthases) are membrane-bound enzyme complexes/ion transporters that combine ATP synthesis and/or hydrolysis with the transport of protons across a membrane. ATPases can harness the energy from a proton gradient, using the flux of ions across the membrane via the ATPase proton channel to drive the synthesis of ATP. Some ATPases work in reverse, using the energy from the hydrolysis of ATP to create a proton gradient.

There are different types of ATPases, which can differ in function (ATP synthesis and/or hydrolysis), structure (F-, V- and A-ATPases contain rotary motors) and in the type of ions they transport. [3] [4] The types with this domain include:

In F-ATPases, there are three copies each of the alpha and beta subunits that form the catalytic core of the F1 complex, while the remaining F1 subunits (gamma, delta, epsilon) form part of the stalks. There is a substrate-binding site on each of the alpha and beta subunits, those on the beta subunits being catalytic, while those on the alpha subunits are regulatory. The alpha and beta subunits form a cylinder that is attached to the central stalk. The alpha/beta subunits undergo a sequence of conformational changes leading to the formation of ATP from ADP, which are induced by the rotation of the gamma subunit, itself is driven by the movement of protons through the Fo complex C subunit. [7]

In V- and A-ATPases, the alpha/A and beta/B subunits of the V1 or A1 complex are homologous to the alpha and beta subunits in the F1 complex of F-ATPases, except that the alpha subunit is catalytic and the beta subunit is regulatory.

The alpha/A and beta/B subunits can each be divided into three regions, or domains, centred on the ATP-binding pocket, and based on structure and function. The central domain contains the nucleotide-binding residues that make direct contact with the ADP/ATP molecule. [8]

Human proteins containing this domain

ATP5A1; ATP5B; ATP6V1A; ATP6V1B7; ATP6V1B4;

References

  1. Itoh H, Yoshida M, Yasuda R, Noji H, Kinosita K (2001). "Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase". Nature. 410 (6831): 898–904. Bibcode:2001Natur.410..898Y. doi:10.1038/35073513. PMID   11309608. S2CID   3274681.
  2. Wilkens S, Zheng Y, Zhang Z (2005). "A structural model of the vacuolar ATPase from transmission electron microscopy". Micron. 36 (2): 109–126. doi:10.1016/j.micron.2004.10.002. PMID   15629643.
  3. Muller V, Cross RL (2004). "The evolution of A-, F-, and V-type ATP synthases and ATPases: reversals in function and changes in the H+/ATP coupling ratio". FEBS Lett. 576 (1): 1–4. Bibcode:2004FEBSL.576....1C. doi: 10.1016/j.febslet.2004.08.065 . PMID   15473999. S2CID   25800744.
  4. Zhang X, Niwa H, Rappas M (2004). "Mechanisms of ATPases--a multi-disciplinary approach". Curr Protein Pept Sci. 5 (2): 89–105. doi:10.2174/1389203043486874. PMID   15078220.
  5. Imada, Katsumi; Minamino, Tohru; Uchida, Yumiko; Kinoshita, Miki; Namba, Keiichi (29 March 2016). "Insight into the flagella type III export revealed by the complex structure of the type III ATPase and its regulator". Proceedings of the National Academy of Sciences. 113 (13): 3633–3638. Bibcode:2016PNAS..113.3633I. doi: 10.1073/pnas.1524025113 . PMC   4822572 . PMID   26984495.
  6. Skordalakes, Emmanuel; Berger, James M (July 2003). "Structure of the Rho Transcription Terminator". Cell. 114 (1): 135–146. doi: 10.1016/S0092-8674(03)00512-9 . PMID   12859904. S2CID   5765103.
  7. Amzel LM, Bianchet MA, Leyva JA (2003). "Understanding ATP synthesis: structure and mechanism of the F1-ATPase (Review)". Mol. Membr. Biol. 20 (1): 27–33. doi: 10.1080/0968768031000066532 . PMID   12745923. S2CID   218895820.
  8. Chandler D, Wang H, Antes I, Oster G (2003). "The unbinding of ATP from F1-ATPase". Biophys. J. 85 (2): 695–706. Bibcode:2003BpJ....85..695A. doi:10.1016/S0006-3495(03)74513-5. PMC   1303195 . PMID   12885621.
This article incorporates text from the public domain Pfam and InterPro: IPR000194