ATSC-M/H

Last updated

ATSC-M/H (Advanced Television Systems Committee - Mobile/Handheld) is a U.S. standard for mobile digital TV that allows TV broadcasts to be received by mobile devices. [1]

Contents

ATSC-M/H is a mobile TV extension to preexisting terrestrial TV broadcasting standard ATSC A/53. It corresponds to the European DVB-H and 1seg extensions of DVB-T and ISDB-T terrestrial digital TV standards respectively. ATSC is optimized for a fixed reception in the typical North American environment and uses 8VSB modulation. The ATSC transmission method is not robust enough against Doppler shift and multipath radio interference in mobile environments, and is designed for highly directional fixed antennas. To overcome these issues, additional channel coding mechanisms are introduced in ATSC-M/H to protect the signal. As of 2021, ATSC-M/H is considered to have been a commercial failure. [2]

Evolution of mobile TV standard

Requirements

Several requirements of the new standard were fixed right from the beginning:

Proposals

Ten systems from different companies were proposed, and two remaining systems were presented with transmitter and receiver prototypes:

To find the best solution, the Advanced Television Systems Committee assigned the Open Mobile Video Coalition (OMVC) to test both systems. The test report was presented on May 15, 2008. As a result of this detailed work by the OMVC, a final standard draft was designed by the Advanced Television Systems Committee, specialist group S-4. ATSC-M/H will be a hybrid. Basically the following components of the proposed systems are used:

Standard milestones

On December 1, 2008, the Advanced Television Systems Committee elevated its specification for Mobile Digital Television to Candidate Standard status. In the following six months, the industry tested the standard. Before it became an official standard, additional improvements were proposed.

Structure of mobile DTV standard

The ATSC Mobile DTV standard ATSC-M/H (A/153) is modular in concept, with the specifications for each of the modules contained separate Parts. The individual Parts of A/153 are as follows:

Principle

ATSC-M/H is a service for mobile TV receivers and partly uses the 19.39 Mbit/s ATSC 8VSB stream. The mobile data is carried in an unreferenced Packet ID, so legacy receivers ignore the mobile data.

Block Diagram Headend ATSC Headend Block Diagram.png
Block Diagram Headend

Technology

ATSC-M/H bandwidth consumes fixed chunks of 917 kbit/s out of the total ATSC Bandwidth. Each such chunk is called an M/H Group. A data pipe called a parade is a collection of one to eight M/H groups. A parade conveys one or two ensembles which are logical pipes of IP datagrams. Those datagrams in turn carry TV services, System Signaling tables, OMA DRM key streams and the Electronic Service Guide. ATSC-M/H has an improved design based on detailed analyses of experiences with other mobile DTV standards.

ATSC-M/H Layer Model ATSC-MH Layer-Model.png
ATSC-M/H Layer Model

Protocol stack

ATSC-M/H protocol stack is mainly an umbrella protocol that uses OMA ESG, OMA DRM, MPEG-4 in addition to many IETF RFCs.

Transport stream data structure

The ATSC-M/H standard defines a fixed transport stream structure, based on M/H Frames, which establishes the location of M/H content within the VSB Frames and allows for easier processing by an M/H receiver. This is contrary to the legacy ATSC transport stream, defined in A/53, in which there is no fixed structure to establish the phase of the data relative to VSB Frames.

One M/H Frame is equivalent in size to 20 VSB Frames and has an offset of 37 transport stream (TS) packets relative to the beginning of the VSB Frame. Each M/H Frame, which has a fixed duration of 968 ms, is divided into five M/H sub-frames and each sub-frame is further subdivided into sixteen M/H Slots. Each slot is the equivalent amount of time needed to transmit 156 TS packets. A slot may either carry all main ATSC data (A/53) or 118 packets of M/H data and 38 packets of main data. The collection of 118 M/H packets transmitted within a slot is called an M/H Group. Each of the 118 M/H packets within an M/H Group are encapsulated inside a special TS packet, known as an MHE packet.

An M/H Parade is a collection of M/H Groups and can carry one or two M/H Ensembles. These Ensembles are logical pipes for IP datagrams. Those datagrams in turn carry TV services and the signaling of mobile content. The M/H Groups from a single Parade are placed within M/H Slots according to an algorithm defined in A/153 Part 2. The Number of Groups per M/H Sub-Frame (NoG) for an M/H Parade ranges from 1 to 8 and therefore the number of Groups per an M/H Frame for a Parade ranges from 5 to 40 with a step of 5. The data of a Parade are channel coded and distributed by an interleaver during an M/H Frame.

Mobile Data are protected by an additional FEC, as Interleaving and Convolutional codes. To improve the reception in the receiver, training sequences are introduced into the ATSC-M/H signal to allow channel estimation on the receiver side.

Time slicing is a technique used by ATSC-M/H to provide power savings on receivers. It is based on the time-multiplexed transmission of different services.

Error protection

ATSC-M/H combines multiple error protection mechanisms for added robustness. One is an outer Reed–Solomon error correction code which corrects defective bytes after decoding the outer convolutional code in the receiver. The correction is improved by an additional CRC checksum since bytes can be marked as defective before they are decoded (erasure decoding).

The number of RS parity symbols can represent 24, 36 or 48. The symbols and the additional checksum form the outer elements of a data matrix which is allocated by the payload of the M/H Ensemble. The number of lines is fixed and the number of columns is variable according to how many slots per Subframe are occupied.

The RS Frame is then partitioned into several segments of different sizes and assigned to specified regions. The M/H data in these regions are protected by an SCCC (Series Concatenated Convolutional Code), incorporating a code rate of 1/2 or 1/4, and is specific to each region in a group. A 1/4 rate PCCC (Parallel Concatenated Convolutional Code) is also employed as an inner code for the M/H signaling channel, which includes FIC (Fast Information Channel) and TPC (Transmission Parameter Channel). The TPC carries various FEC modes and M/H Frame information. Once the TPC is extracted, the receiver then knows the code rates being employed and can decode each region at its specified rate.

A modified trellis encoder is also employed for backwards compatibility with legacy A/53 receivers.

The time interleaving of ATSC-M/H is 1 second.

Signaling

ATSC M/H Signaling and Announcement defines three different layers of signalling. The layers are organized hierarchically and optimized to characteristics of the transmission layer.

Signaling of video- and audio coding

Each video- or audio decoder needs information about the used coding parameters, for instance resolution, frame rate and IDR (Random Access Point) repetition rate. In MPEG-4/AVC, mobile TV systems the receiver uses information from the Session Description Protocol File (SDP-File). The SDP-file is a format which describes streaming media initialization parameters. In ATSC-M/H, the SDP-File is transmitted within the SMT-Table. Most of the information is coded in binary, but some is coded in the original ASCII text format. The SMT-Table combines information that is typically in different tables and reduces the complexity for the network and the receivers. In case of signaling with ESG, the complete SDP-File is transmitted.

Single-frequency network (SFN)

In an SFN, two or more transmitters with an overlapping coverage send the same program content simultaneously on the same frequency. The 8VSB modulation used by ATSC allows SFN transmissions.[ citation needed ] To allow regular channel approximation, ATSC-M/H provides additional training sequences. ATSC A/110 defines a method to synchronize the ATSC modulator as part of the transmitter. The A/110 standard sets up the Trellis coder in a pre-calculated way to all transmitters of the SFN. In such an SFN, the ATSC-M/H multiplexer and the ATSC-M/H transmitter are synchronized by a GPS reference. The ATSC-M/H multiplexer operates as a network adapter and inserts time stamps in the MPEG transport stream. The transmitter analyzes the time stamp, delays the transport stream before it is modulated and transmitted. Eventually, all SFN transmitters generate a synchronized signal.

Other mobile standards

Until its shutdown, MediaFLO had been available in parts of the United States. It was a premium service that required subscription. ATSC-M/H would be free to air, as are regular broadcast signals. Both Standards were designed without sufficient consideration of the continued growth of the internet and mobile platforms which today provide excellent multimedia capabilities using only web-centric codecs and protocols rather than repurposing of existing Standards suited to legacy broadcasting.

Related Research Articles

<span class="mw-page-title-main">Digital television</span> Television transmission using digital encoding

Digital television (DTV) is the transmission of television signals using digital encoding, in contrast to the earlier analog television technology which used analog signals. At the time of its development it was considered an innovative advancement and represented the first significant evolution in television technology since color television in the 1950s. Modern digital television is transmitted in high-definition television (HDTV) with greater resolution than analog TV. It typically uses a widescreen aspect ratio in contrast to the narrower format (4:3) of analog TV. It makes more economical use of scarce radio spectrum space; it can transmit up to seven channels in the same bandwidth as a single analog channel, and provides many new features that analog television cannot. A transition from analog to digital broadcasting began around 2000. Different digital television broadcasting standards have been adopted in different parts of the world; below are the more widely used standards:

<span class="mw-page-title-main">MPEG-2</span> Video encoding standard

MPEG-2 is a standard for "the generic coding of moving pictures and associated audio information". It describes a combination of lossy video compression and lossy audio data compression methods, which permit storage and transmission of movies using currently available storage media and transmission bandwidth. While MPEG-2 is not as efficient as newer standards such as H.264/AVC and H.265/HEVC, backwards compatibility with existing hardware and software means it is still widely used, for example in over-the-air digital television broadcasting and in the DVD-Video standard.

<span class="mw-page-title-main">Orthogonal frequency-division multiplexing</span> Method of encoding digital data on multiple carrier frequencies

In telecommunications, orthogonal frequency-division multiplexing (OFDM) is a type of digital transmission used in digital modulation for encoding digital (binary) data on multiple carrier frequencies. OFDM has developed into a popular scheme for wideband digital communication, used in applications such as digital television and audio broadcasting, DSL internet access, wireless networks, power line networks, and 4G/5G mobile communications.

<span class="mw-page-title-main">Packet radio</span> Form of amateur radio data communications using the AX25 protocol

In digital radio, packet radio is the application of packet switching techniques to digital radio communications. Packet radio uses a packet switching protocol as opposed to circuit switching or message switching protocols to transmit digital data via a radio communication link.

In telecommunications and computer networking, a network packet is a formatted unit of data carried by a packet-switched network. A packet consists of control information and user data; the latter is also known as the payload. Control information provides data for delivering the payload. Typically, control information is found in packet headers and trailers.

8VSB is the modulation method used for broadcast in the ATSC digital television standard. ATSC and 8VSB modulation is used primarily in North America; in contrast, the DVB-T standard uses COFDM.

<span class="mw-page-title-main">ATSC standards</span> Standards for digital television in the US

Advanced Television Systems Committee (ATSC) standards are an International set of standards for broadcast and digital television transmission over terrestrial, cable and satellite networks. It is largely a replacement for the analog NTSC standard and, like that standard, is used mostly in the United States, Mexico, Canada, South Korea and Trinidad & Tobago. Several former NTSC users, such as Japan, have not used ATSC during their digital television transition, because they adopted other systems such as ISDB developed by Japan, and DVB developed in Europe, for example.

The Grand Alliance (GA) was a consortium created in 1993 at the behest of the Federal Communications Commission (FCC) to develop the American digital television and HDTV specification, with the aim of pooling the best work from different companies. It consisted of AT&T Corporation, General Instrument Corporation, Massachusetts Institute of Technology, Philips Consumer Electronics, David Sarnoff Research Center, Thomson Consumer Electronics, and Zenith Electronics Corporation. The Grand Alliance's DTV system is the basis for the ATSC standard.

<span class="mw-page-title-main">Single-frequency network</span>

A single-frequency network or SFN is a broadcast network where several transmitters simultaneously send the same signal over the same frequency channel.

CTA-708 is the standard for closed captioning for ATSC digital television (DTV) streams in the United States and Canada. It was developed by the Consumer Electronics sector of the Electronic Industries Alliance, which later became the standalone organization Consumer Technology Association.

MPEG transport stream or simply transport stream (TS) is a standard digital container format for transmission and storage of audio, video, and Program and System Information Protocol (PSIP) data. It is used in broadcast systems such as DVB, ATSC and IPTV.

DVB-H is one of three prevalent mobile TV formats. It is a technical specification for bringing broadcast services to mobile handsets. DVB-H was formally adopted as ETSI standard EN 302 304 in November 2004. The DVB-H specification can be downloaded from the official DVB-H website. From March 2008, DVB-H is officially endorsed by the European Union as the "preferred technology for terrestrial mobile broadcasting". The major competitors of this technology are Qualcomm's MediaFLO system, the 3G cellular system based MBMS mobile-TV standard, and the ATSC-M/H format in the U.S. DVB-SH now and DVB-NGH in the future are possible enhancements to DVB-H, providing improved spectral efficiency and better modulation flexibility. DVB-H has been a commercial failure, and the service is no longer on-air. Ukraine was the last country with a nationwide broadcast in DVB-H, which began transitioning to DVB-T2 during 2019.

<span class="mw-page-title-main">Asynchronous serial interface</span> Standardised transport interface for the broadcast industry

Asynchronous Serial Interface, or ASI, is a method of carrying an MPEG Transport Stream (MPEG-TS) over 75-ohm copper coaxial cable or optical fiber. It is popular in the television industry as a means of transporting broadcast programs from the studio to the final transmission equipment before it reaches viewers sitting at home.

<span class="mw-page-title-main">MediaFLO</span> Media transmission technology developed by Qualcomm

MediaFLO was a technology developed by Qualcomm for transmitting audio, video and data to portable devices such as mobile phones and personal televisions, used for mobile television. In the United States, the service powered by this technology was branded as FLO TV.

<span class="mw-page-title-main">ATSC tuner</span> Tuner for digital television channels

An ATSCtuner, often called an ATSC receiver or HDTV tuner, is a type of television tuner that allows reception of digital television (DTV) television channels that use ATSC standards, as transmitted by television stations in North America, parts of Central America, and South Korea. Such tuners are usually integrated into a television set, VCR, digital video recorder (DVR), or set-top box which provides audio/video output connectors of various types.

E-VSB or Enhanced VSB is an optional enhancement to the original ATSC Standards that use the 8VSB modulation system used for transmission of digital television. It is intended for improving reception where signals are weaker, including fringe reception areas, and on portable devices such as handheld televisions or mobile phones. It does not cause problems to older receivers, but they cannot take advantage of its features. E-VSB was approved by the ATSC committee in 2004. However, it has been implemented by few stations or manufacturers.

A-VSB or Advanced VSB is a modification of the 8VSB modulation system used for transmission of digital television using the ATSC system. One of the constraints of conventional ATSC transmission is that reliable reception is difficult or impossible when the receiver is moving at speeds associated with normal vehicular traffic. The technology was jointly developed by Samsung and Rohde & Schwarz.

<span class="mw-page-title-main">DTV receiver</span>

A DTV receiver is a set-top box that permits the reception of digital television. Its components are very similar to a desktop PC. The DTV receiver is a vital link in the chain of television system. The goal of a broadcasting system is to concentrate the hardware requirements at the source to simplify the receivers and makes it as inexpensive as possible.

In North American digital terrestrial television broadcasting, a distributed transmission system is a form of single-frequency network in which a single broadcast signal is fed via microwave, landline, or communications satellite to multiple synchronised terrestrial radio transmitter sites. The signal is then simultaneously broadcast on the same frequency in different overlapping portions of the same coverage area, effectively combining many small transmitters to generate a broadcast area rivalling that of one large transmitter or to fill gaps in coverage due to terrain or localised obstacles.

References

  1. "A/153: ATSC Mobile DTV Standard, Parts 1 - 9" (PDF). Archived from the original (PDF) on April 3, 2012.
  2. Jessell, Harry A. (October 25, 2013). "Mobile DTV Is Dead, Long Live ATSC 3.0". TV News Check.