Abrams' law

Last updated

Abrams' law (also called Abrams' water-cement ratio law) [1] is a concept in civil engineering. The law states the strength of a concrete mix is inversely related to the mass ratio of water to cement. [1] [2] As the water content increases, the strength of concrete decreases.

Abrams’ law is a special case of a general rule formulated empirically by Feret:

where

S is the strength of concrete
A and B are constants and A=96 N/mm2, B=7 (this is valid for the strength of concrete at the age of 28 days)
w/c is the water–cement ratio, which varies from 0.3 to 1.20

Related Research Articles

Concrete Composite construction material

Concrete is a composite material composed of fine and coarse aggregate bonded together with a fluid cement that hardens (cures) over time. In the past, lime based cement binders, such as lime putty, were often used but sometimes with other hydraulic cements, such as a calcium aluminate cement or with Portland cement to form Portland cement concrete. Many other non-cementitious types of concrete exist with other methods of binding aggregate together, including asphalt concrete with a bitumen binder, which is frequently used for road surfaces, and polymer concretes that use polymers as a binder. Concrete is distinct from mortar. Whereas concrete is itself a building material, mortar is a bonding agent that typically holds bricks, tiles and other masonry units together.

Cement Hydraulic binder used in the composition of mortar and concrete

A cement is a binder, a substance used for construction that sets, hardens, and adheres to other materials to bind them together. Cement is seldom used on its own, but rather to bind sand and gravel (aggregate) together. Cement mixed with fine aggregate produces mortar for masonry, or with sand and gravel, produces concrete. Concrete is the most widely used material in existence and is behind only water as the planet's most-consumed resource.

Geotechnical engineering Scientific study of earth materials in engineering problems

Geotechnical engineering, also known as geotechnics, is the branch of civil engineering concerned with the engineering behavior of earth materials. It uses the principles of soil mechanics and rock mechanics for the solution of its respective engineering problems. It also relies on knowledge of geology, hydrology, geophysics, and other related sciences. Geotechnical (rock) engineering is a subdiscipline of geological engineering.

Portland cement Binder used as basic ingredient of concrete

Portland cement is the most common type of cement in general use around the world as a basic ingredient of concrete, mortar, stucco, and non-specialty grout. It was developed from other types of hydraulic lime in England in the early 19th century by Joseph Aspdin, and is usually made from limestone. It is a fine powder, produced by heating limestone and clay minerals in a kiln to form clinker, grinding the clinker, and adding 2 to 3 percent of gypsum. Several types of portland cement are available. The most common, called ordinary portland cement (OPC), is grey, but white portland cement is also available. Its name is derived from its resemblance to Portland stone which was quarried on the Isle of Portland in Dorset, England. It was named by Joseph Aspdin who obtained a patent for it in 1824. However, his son William Aspdin is regarded as the inventor of "modern" portland cement due to his developments in the 1840s.

Reinforced concrete Concrete with rebar

Reinforced concrete (RC), also called reinforced cement concrete (RCC), is a composite material in which concrete's relatively low tensile strength and ductility are compensated for by the inclusion of reinforcement having higher tensile strength or ductility. The reinforcement is usually, though not necessarily, steel bars (rebar) and is usually embedded passively in the concrete before the concrete sets. Worldwide, in volume terms it is an absolutely key engineering material.

Soil mechanics Branch of soil physics and applied mechanics that describes the behavior of soils

Soil mechanics is a branch of soil physics and applied mechanics that describes the behavior of soils. It differs from fluid mechanics and solid mechanics in the sense that soils consist of a heterogeneous mixture of fluids and particles but soil may also contain organic solids and other matter. Along with rock mechanics, soil mechanics provides the theoretical basis for analysis in geotechnical engineering, a subdiscipline of civil engineering, and engineering geology, a subdiscipline of geology. Soil mechanics is used to analyze the deformations of and flow of fluids within natural and man-made structures that are supported on or made of soil, or structures that are buried in soils. Example applications are building and bridge foundations, retaining walls, dams, and buried pipeline systems. Principles of soil mechanics are also used in related disciplines such as geophysical engineering, coastal engineering, agricultural engineering, hydrology and soil physics.

Duff A. Abrams was an American researcher in the field of composition and properties of concrete. He developed the basic methods for testing concrete characteristics still in use today. A professor with the Lewis Institute, he studied the component materials of concrete in the early 20th century.

Structural steel is a category of steel used for making construction materials in a variety of shapes. Many structural steel shapes take the form of an elongated beam having a profile of a specific cross section. Structural steel shapes, sizes, chemical composition, mechanical properties such as strengths, storage practices, etc., are regulated by standards in most industrialized countries.

The water–cement ratio is the ratio of the weight of water to the weight of cement used in a concrete mix. A lower ratio leads to higher strength and durability, but may make the mix difficult to work with and form. Workability can be resolved with the use of plasticizers or super-plasticizers.

Ground-granulated blast-furnace slag is obtained by quenching molten iron slag from a blast furnace in water or steam, to produce a glassy, granular product that is then dried and ground into a fine powder. Ground-granulated blast furnace slag is highly cementitious and high in calcium silicate hydrates (CSH) which is a strength enhancing compound which improves the strength, durability and appearance of the concrete.

Pervious concrete High-porosity, water-permeable concrete

Pervious concrete is a special type of concrete with a high porosity used for concrete flatwork applications that allows water from precipitation and other sources to pass directly through, thereby reducing the runoff from a site and allowing groundwater recharge.

Roman concrete Building material used in ancient Rome

Roman concrete, also called opus caementicium, was a material used in construction in Ancient Rome. Roman concrete was based on a hydraulic-setting cement. It is durable due to its incorporation of pozzolanic ash, which prevents cracks from spreading. By the middle of the 1st century, the material was used frequently, often brick-faced, although variations in aggregate allowed different arrangements of materials. Further innovative developments in the material, called the concrete revolution, contributed to structurally complicated forms, such as the Pantheon dome, the world's largest and oldest unreinforced concrete dome.

Structural material

Structural engineering depends on the knowledge of materials and their properties, in order to understand how different materials resist and support loads.

Lunarcrete, also known as "mooncrete", an idea first proposed by Larry A. Beyer of the University of Pittsburgh in 1985, is a hypothetical aggregate building material, similar to concrete, formed from lunar regolith, that would reduce the construction costs of building on the Moon.

Types of concrete concrete technology used in building construction

Concrete is produced in a variety of compositions, finishes and performance characteristics to meet a wide range of needs.

Concrete has relatively high compressive strength, but significantly lower tensile strength. The compressive strength is typically controlled with the ratio of water to cement when forming the concrete, and tensile strength is increased by additives, typically steel, to create reinforced concrete. In other words we can say concrete is made up of sand ,ballast, cement and water.

Geopolymer cement

Geopolymer cement is a binding system that hardens at room temperature.

The pozzolanic activity is a measure for the degree of reaction over time or the reaction rate between a pozzolan and Ca2+ or calcium hydroxide (Ca(OH)2) in the presence of water. The rate of the pozzolanic reaction is dependent on the intrinsic characteristics of the pozzolan such as the specific surface area, the chemical composition and the active phase content.

This glossary of civil engineering terms is a list of definitions of terms and concepts pertaining specifically to civil engineering, its sub-disciplines, and related fields. For a more general overview of concepts within engineering as a whole, see Glossary of engineering.

This glossary of structural engineering terms pertains specifically to structural engineering and its sub-disciplines. Please see glossary of engineering for a broad overview of the major concepts of engineering.

References

  1. 1 2 Punmia, Dr B. C.; Jain, Ashok Kumar; Jain, Arun Kr (2003-05-01). Basic Civil Engineering. Firewall Media. ISBN   9788170084037.
  2. Scott, John S. (1992-10-31). Dictionary Of Civil Engineering. Springer Science & Business Media. ISBN   9780412984211.

[1]


  1. Abrams law, air and high water-to-cement ratios by ELSEVIER