AdS/QCD correspondence

Last updated

In theoretical physics, the anti-de Sitter/quantum chromodynamics correspondence is a goal (not yet successfully accomplished) to describe quantum chromodynamics (QCD) in terms of a dual gravitational theory, following the principles of the AdS/CFT correspondence in a setup where the quantum field theory is not a conformal field theory.

Contents

History

The proposal of the AdS/CFT correspondence in late 1997 was the culmination of a long history of efforts to relate string theory to nuclear physics. [1] In fact, string theory was originally developed during the late 1960s and early 1970s as a theory of hadrons, the subatomic particles like the proton and neutron that are held together by the strong nuclear force. The idea was that each of these particles could be viewed as a different oscillation mode of a string. In the late 1960s, experimentalists had found that hadrons fall into families called Regge trajectories with squared energy proportional to angular momentum, and theorists showed that this relationship emerges naturally from the physics of a rotating relativistic string. [2]

On the other hand, attempts to model hadrons as strings faced serious problems. One problem was that string theory includes a massless spin-2 particle whereas no such particle appears in the physics of hadrons. [1] Such a particle would mediate a force with the properties of gravity. In 1974, Joël Scherk and John Schwarz suggested that string theory was therefore not a theory of nuclear physics as many theorists had thought but instead a theory of quantum gravity. [3] At the same time, it was realized that hadrons are actually made of quarks, and the string theory approach was abandoned in favor of quantum chromodynamics. [1]

In quantum chromodynamics, quarks have a kind of charge that comes in three varieties called colors. In a paper from 1974, Gerard 't Hooft studied the relationship between string theory and nuclear physics from another point of view by considering theories similar to quantum chromodynamics, where the number of colors is some arbitrary number , rather than three. In this article, 't Hooft considered a certain limit where tends to infinity and argued that in this limit certain calculations in quantum field theory resemble calculations in string theory. [4]

In late 1997, Juan Maldacena published a landmark paper that initiated the study of AdS/CFT. One special case of Maldacena's proposal says that N = 4 supersymmetric Yang–Mills theory, a gauge theory similar in some ways to quantum chromodynamics, is equivalent to string theory in five-dimensional anti-de Sitter space. This result helped clarify the earlier work of 't Hooft on the relationship between string theory and quantum chromodynamics, taking string theory back to its roots as a theory of nuclear physics. [5]

Applications of AdS/CFT

One physical system that has been studied using the AdS/CFT correspondence is the quark–gluon plasma, an exotic state of matter produced in particle accelerators. This state of matter arises for brief instants when heavy ions such as gold or lead nuclei are collided at high energies. Such collisions cause the quarks that make up atomic nuclei to deconfine at temperatures of approximately two trillion kelvins, conditions similar to those present at around seconds after the Big Bang. [6]

The physics of the quark–gluon plasma is governed by quantum chromodynamics, but this theory is mathematically intractable in problems involving the quark–gluon plasma. [7] In an article appearing in 2005, Đàm Thanh Sơn and his collaborators showed that the AdS/CFT correspondence could be used to understand some aspects of the quark–gluon plasma by describing it in the language of string theory. [8] By applying the AdS/CFT correspondence, Sơn and his collaborators were able to describe the quark gluon plasma in terms of black holes in five-dimensional spacetime. The calculation showed that the ratio of two quantities associated with the quark–gluon plasma, the shear viscosity and volume density of entropy , should be approximately equal to a certain universal constant:

where denotes the reduced Planck constant and is the Boltzmann constant. [9] In addition, the authors conjectured that this universal constant provides a lower bound for in a large class of systems. In an experiment conducted at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory, the experimental result in one model was close to this universal contant but it was not the case in another model. [10]

Another important property of the quark–gluon plasma is that very high energy quarks moving through the plasma are stopped or "quenched" after traveling only a few femtometers. This phenomenon is characterized by a number called the jet quenching parameter, which relates the energy loss of such a quark to the squared distance traveled through the plasma. Calculations based on the AdS/CFT correspondence give the estimated value ~ 4 GeV2/fm, and the experimental value of lies in the range 5–15 GeV2/fm. [11]

Criticism

Despite many physicists turning towards string-based methods to attack problems in nuclear and condensed matter physics, some theorists working in these areas have expressed doubts about whether the AdS/CFT correspondence can provide the tools needed to realistically model real-world systems. In a talk at the Quark Matter conference in 2006, [12] Larry McLerran pointed out that the super Yang–Mills theory that appears in the AdS/CFT correspondence differs significantly from quantum chromodynamics, making it difficult to apply these methods to nuclear physics. According to McLerran,

" supersymmetric Yang–Mills is not QCD ... It has no mass scale and is conformally invariant. It has no confinement and no running coupling constant. It is supersymmetric. It has no chiral symmetry breaking or mass generation. It has six scalar and fermions in the adjoint representation ... It may be possible to correct some or all of the above problems, or, for various physical problems, some of the objections may not be relevant. As yet there is no consensus nor compelling arguments for the conjectured fixes or phenomena which would insure that the supersymmetric Yang Mills results would reliably reflect QCD." [12]

See also

Notes

  1. 1 2 3 Zwiebach 2009, p. 525
  2. Aharony et al. 2008, sec. 1.1
  3. Scherk and Schwarz 1974
  4. 't Hooft 1974
  5. Aharony et al. 2008
  6. Zwiebach 2009, p. 559
  7. More precisely, one cannot apply the methods of perturbative quantum field theory.
  8. Kovtun, Son, and Starinets 2005
  9. Zwiebach 2009, p. 561; Kovtun, Son, and Starinets 2005
  10. Luzum and Romatschke, 2008, Conformal Relativistic Viscous Hydrodynamics: Applications to RHIC results at sqrt(s_NN) = 200 GeV, Part IV. C.
  11. Zwiebach, 2009, A First Course in String Theory, p. 561
  12. 1 2 McLerran 2007

Related Research Articles

<span class="mw-page-title-main">Gluon</span> Elementary particle that mediates the strong force

A gluon is a type of massless elementary particle that mediates the strong interaction between quarks, acting as the exchange particle for the interaction. Gluons are massless vector bosons, thereby having a spin of 1. Through the strong interaction, gluons bind quarks into groups according to quantum chromodynamics (QCD), forming hadrons such as protons and neutrons.

The holographic principle is a property of string theories and a supposed property of quantum gravity that states that the description of a volume of space can be thought of as encoded on a lower-dimensional boundary to the region — such as a light-like boundary like a gravitational horizon. First proposed by Gerard 't Hooft, it was given a precise string theoretic interpretation by Leonard Susskind, who combined his ideas with previous ones of 't Hooft and Charles Thorn. Leonard Susskind said, "The three-dimensional world of ordinary experience––the universe filled with galaxies, stars, planets, houses, boulders, and people––is a hologram, an image of reality coded on a distant two-dimensional surface." As pointed out by Raphael Bousso, Thorn observed in 1978 that string theory admits a lower-dimensional description in which gravity emerges from it in what would now be called a holographic way. The prime example of holography is the AdS/CFT correspondence.

M-theory is a theory in physics that unifies all consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1995. Witten's announcement initiated a flurry of research activity known as the second superstring revolution. Prior to Witten's announcement, string theorists had identified five versions of superstring theory. Although these theories initially appeared to be very different, work by many physicists showed that the theories were related in intricate and nontrivial ways. Physicists found that apparently distinct theories could be unified by mathematical transformations called S-duality and T-duality. Witten's conjecture was based in part on the existence of these dualities and in part on the relationship of the string theories to a field theory called eleven-dimensional supergravity.

<span class="mw-page-title-main">Quark</span> Elementary particle, main constituent of matter

A quark is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly observable matter is composed of up quarks, down quarks and electrons. Owing to a phenomenon known as color confinement, quarks are never found in isolation; they can be found only within hadrons, which include baryons and mesons, or in quark–gluon plasmas. For this reason, much of what is known about quarks has been drawn from observations of hadrons.

<span class="mw-page-title-main">Quantum chromodynamics</span> Theory of the strong nuclear interactions

In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of quantum field theory called a non-abelian gauge theory, with symmetry group SU(3). The QCD analog of electric charge is a property called color. Gluons are the force carriers of the theory, just as photons are for the electromagnetic force in quantum electrodynamics. The theory is an important part of the Standard Model of particle physics. A large body of experimental evidence for QCD has been gathered over the years.

In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string looks just like an ordinary particle, with its mass, charge, and other properties determined by the vibrational state of the string. In string theory, one of the many vibrational states of the string corresponds to the graviton, a quantum mechanical particle that carries the gravitational force. Thus, string theory is a theory of quantum gravity.

<span class="mw-page-title-main">Color confinement</span> Phenomenon in quantum chromodynamics

In quantum chromodynamics (QCD), color confinement, often simply called confinement, is the phenomenon that color-charged particles cannot be isolated, and therefore cannot be directly observed in normal conditions below the Hagedorn temperature of approximately 2 terakelvin. Quarks and gluons must clump together to form hadrons. The two main types of hadron are the mesons and the baryons. In addition, colorless glueballs formed only of gluons are also consistent with confinement, though difficult to identify experimentally. Quarks and gluons cannot be separated from their parent hadron without producing new hadrons.

In theoretical physics, the anti-de Sitter/conformal field theory correspondence is a conjectured relationship between two kinds of physical theories. On one side are anti-de Sitter spaces (AdS) that are used in theories of quantum gravity, formulated in terms of string theory or M-theory. On the other side of the correspondence are conformal field theories (CFT) that are quantum field theories, including theories similar to the Yang–Mills theories that describe elementary particles.

In quantum field theory, asymptotic freedom is a property of some gauge theories that causes interactions between particles to become asymptotically weaker as the energy scale increases and the corresponding length scale decreases.

<span class="mw-page-title-main">Relativistic Heavy Ion Collider</span> Particle accelerator

The Relativistic Heavy Ion Collider is the first and one of only two operating heavy-ion colliders, and the only spin-polarized proton collider ever built. Located at Brookhaven National Laboratory (BNL) in Upton, New York, and used by an international team of researchers, it is the only operating particle collider in the US. By using RHIC to collide ions traveling at relativistic speeds, physicists study the primordial form of matter that existed in the universe shortly after the Big Bang. By colliding spin-polarized protons, the spin structure of the proton is explored.

In theoretical physics, the Coleman–Mandula theorem is a no-go theorem stating that spacetime and internal symmetries can only combine in a trivial way. This means that the charges associated with internal symmetries must always transform as Lorentz scalars. Some notable exceptions to the no-go theorem are conformal symmetry and supersymmetry. It is named after Sidney Coleman and Jeffrey Mandula who proved it in 1967 as the culmination of a series of increasingly generalized no-go theorems investigating how internal symmetries can be combined with spacetime symmetries. The supersymmetric generalization is known as the Haag–Łopuszański–Sohnius theorem.

The QCD vacuum is the quantum vacuum state of quantum chromodynamics (QCD). It is an example of a non-perturbative vacuum state, characterized by non-vanishing condensates such as the gluon condensate and the quark condensate in the complete theory which includes quarks. The presence of these condensates characterizes the confined phase of quark matter.

<span class="mw-page-title-main">Jet (particle physics)</span>

A jet is a narrow cone of hadrons and other particles produced by the hadronization of quarks and gluons in a particle physics or heavy ion experiment. Particles carrying a color charge, i.e. quarks and gluons, cannot exist in free form because of quantum chromodynamics (QCD) confinement which only allows for colorless states. When protons collide at high energies, their color charged components each carry away some of the color charge. In order to obey confinement, these fragments create other colored objects around them to form colorless hadrons. The ensemble of these objects is called a jet, since the fragments all tend to travel in the same direction, forming a narrow "jet" of particles. Jets are measured in particle detectors and studied in order to determine the properties of the original quarks.

Montonen–Olive duality or electric–magnetic duality is the oldest known example of strong–weak duality or S-duality according to current terminology. It generalizes the electro-magnetic symmetry of Maxwell's equations by stating that magnetic monopoles, which are usually viewed as emergent quasiparticles that are "composite", can in fact be viewed as "elementary" quantized particles with electrons playing the reverse role of "composite" topological solitons; the viewpoints are equivalent and the situation dependent on the duality. It was later proven to hold true when dealing with a N = 4 supersymmetric Yang–Mills theory. It is named after Finnish physicist Claus Montonen and British physicist David Olive after they proposed the idea in their academic paper Magnetic monopoles as gauge particles? where they state:

There should be two "dual equivalent" field formulations of the same theory in which electric (Noether) and magnetic (topological) quantum numbers exchange roles.

The history of string theory spans several decades of intense research including two superstring revolutions. Through the combined efforts of many researchers, string theory has developed into a broad and varied subject with connections to quantum gravity, particle and condensed matter physics, cosmology, and pure mathematics.

<span class="mw-page-title-main">Quark–gluon plasma</span> Phase of quantum chromodynamics (QCD)

Quark–gluon plasma is an interacting localized assembly of quarks and gluons at thermal and chemical (abundance) equilibrium. The word plasma signals that free color charges are allowed. In a 1987 summary, Léon van Hove pointed out the equivalence of the three terms: quark gluon plasma, quark matter and a new state of matter. Since the temperature is above the Hagedorn temperature—and thus above the scale of light u,d-quark mass—the pressure exhibits the relativistic Stefan-Boltzmann format governed by temperature to the fourth power and many practically massless quark and gluon constituents. It can be said that QGP emerges to be the new phase of strongly interacting matter which manifests its physical properties in terms of nearly free dynamics of practically massless gluons and quarks. Both quarks and gluons must be present in conditions near chemical (yield) equilibrium with their colour charge open for a new state of matter to be referred to as QGP.

In physics, vector meson dominance (VMD) was a model developed by J. J. Sakurai in the 1960s before the introduction of quantum chromodynamics to describe interactions between energetic photons and hadronic matter.

<span class="mw-page-title-main">Light front holography</span> Technique used to determine mass of hadrons

In strong interaction physics, light front holography or light front holographic QCD is an approximate version of the theory of quantum chromodynamics (QCD) which results from mapping the gauge theory of QCD to a higher-dimensional anti-de Sitter space (AdS) inspired by the AdS/CFT correspondence proposed for string theory. This procedure makes it possible to find analytic solutions in situations where strong coupling occurs, improving predictions of the masses of hadrons and their internal structure revealed by high-energy accelerator experiments. The most widely used approach to finding approximate solutions to the QCD equations, lattice QCD, has had many successful applications; however, it is a numerical approach formulated in Euclidean space rather than physical Minkowski space-time.

This page is a glossary of terms in string theory, including related areas such as supergravity, supersymmetry, and high energy physics.

<span class="mw-page-title-main">Light-front quantization applications</span> Quantization procedure in quantum field theory

The light-front quantization of quantum field theories provides a useful alternative to ordinary equal-time quantization. In particular, it can lead to a relativistic description of bound systems in terms of quantum-mechanical wave functions. The quantization is based on the choice of light-front coordinates, where plays the role of time and the corresponding spatial coordinate is . Here, is the ordinary time, is a Cartesian coordinate, and is the speed of light. The other two Cartesian coordinates, and , are untouched and often called transverse or perpendicular, denoted by symbols of the type . The choice of the frame of reference where the time and -axis are defined can be left unspecified in an exactly soluble relativistic theory, but in practical calculations some choices may be more suitable than others. The basic formalism is discussed elsewhere.

References