Agnew's theorem

Last updated

Agnew's theorem, proposed by American mathematician Ralph Palmer Agnew, characterizes reorderings of terms of infinite series that preserve convergence for all series. [1]

Contents

Statement

We call a permutation an Agnew permutation [a] if there exists such that any interval that starts with 1 is mapped by p to a union of at most K intervals, i.e., , where counts the number of intervals.

Agnew's theorem.  is an Agnew permutation for all converging series of real or complex terms , the series converges to the same sum. [2]

Corollary 1.  (the inverse of ) is an Agnew permutation for all diverging series of real or complex terms , the series diverges. [b]

Corollary 2.  and are Agnew permutations for all series of real or complex terms , the convergence type of the series is the same. [c] [b]

Usage

Agnew's theorem is useful when the convergence of has already been established: any Agnew permutation can be used to rearrange its terms while preserving convergence to the same sum.

The Corollary 2 is useful when the convergence type of is unknown: the convergence type of is the same as that of the original series.

Examples

An important class of permutations is infinite compositions of permutations in which each constituent permutation acts only on its corresponding interval (with ). Since for , we only need to consider the behavior of as increases.

Bounded groups of consecutive terms

When the sizes of all groups of consecutive terms are bounded by a constant, i.e., , and its inverse are Agnew permutations (with ), i.e., arbitrary reorderings can be applied within the groups with the convergence type preserved.

Unbounded groups of consecutive terms

When the sizes of groups of consecutive terms grow without bounds, it is necessary to look at the behavior of .

Mirroring permutations and circular shift permutations, as well as their inverses, add at most 1 interval to the main interval , hence and its inverse are Agnew permutations (with ), i.e., mirroring and circular shifting can be applied within the groups with the convergence type preserved.

A block reordering permutation with B > 1 blocks [d] and its inverse add at most intervals (when is large) to the main interval , hence and its inverse are Agnew permutations, i.e., block reordering can be applied within the groups with the convergence type preserved.

Notes

  1. This terminology is used only in this article, to simplify the explanation.
  2. 1 2 Note that, unlike Agnew's theorem, the corollaries in this article do not specify equivalence, only implication.
  3. Absolutely converging series turn into absolutely converging series, conditionally converging series turn into conditionally converging series (with the same sum), diverging series turn into diverging series.
  4. The case of B = 2 is a circular shift.

Related Research Articles

In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions. The mathematical properties of infinite series make them widely applicable in other quantitative disciplines such as physics, computer science, statistics and finance.

In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability.

<span class="mw-page-title-main">Sequence</span> Finite or infinite ordered list of elements

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members. The number of elements is called the length of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an arbitrary index set.

In probability theory, the Borel–Cantelli lemma is a theorem about sequences of events. In general, it is a result in measure theory. It is named after Émile Borel and Francesco Paolo Cantelli, who gave statement to the lemma in the first decades of the 20th century. A related result, sometimes called the second Borel–Cantelli lemma, is a partial converse of the first Borel–Cantelli lemma. The lemma states that, under certain conditions, an event will have probability of either zero or one. Accordingly, it is the best-known of a class of similar theorems, known as zero-one laws. Other examples include Kolmogorov's zero–one law and the Hewitt–Savage zero–one law.

In mathematics, a power series is an infinite series of the form where an represents the coefficient of the nth term and c is a constant called the center of the series. Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions. In fact, Borel's theorem implies that every power series is the Taylor series of some smooth function.

In mathematics, an infinite series of numbers is said to converge absolutely if the sum of the absolute values of the summands is finite. More precisely, a real or complex series is said to converge absolutely if for some real number Similarly, an improper integral of a function, is said to converge absolutely if the integral of the absolute value of the integrand is finite—that is, if A convergent series that is not absolutely convergent is called conditionally convergent.

In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the good convergence behaviour of monotonic sequences, i.e. sequences that are non-increasing, or non-decreasing. In its simplest form, it says that a non-decreasing bounded-above sequence of real numbers converges to its smallest upper bound, its supremum. Likewise, a non-increasing bounded-below sequence converges to its largest lower bound, its infimum. In particular, infinite sums of non-negative numbers converge to the supremum of the partial sums if and only if the partial sums are bounded.

In mathematics, smooth functions and analytic functions are two very important types of functions. One can easily prove that any analytic function of a real argument is smooth. The converse is not true, as demonstrated with the counterexample below.

In mathematics, an alternating series is an infinite series of terms that alternate between positive and negative signs. In capital-sigma notation this is expressed or with an > 0 for all n.

In mathematics, the root test is a criterion for the convergence of an infinite series. It depends on the quantity

In mathematical analysis, the alternating series test is the method used to show that an alternating series is convergent when its terms (1) decrease in absolute value, and (2) approach zero in the limit. The test was used by Gottfried Leibniz and is sometimes known as Leibniz's test, Leibniz's rule, or the Leibniz criterion. The test is only sufficient, not necessary, so some convergent alternating series may fail the first part of the test.

In mathematics, the Riemann series theorem, also called the Riemann rearrangement theorem, named after 19th-century German mathematician Bernhard Riemann, says that if an infinite series of real numbers is conditionally convergent, then its terms can be arranged in a permutation so that the new series converges to an arbitrary real number, and rearranged such that the new series diverges. This implies that a series of real numbers is absolutely convergent if and only if it is unconditionally convergent.

A Neumann series is a mathematical series that sums k-times repeated applications of an operator . This has the generator form

In mathematics, specifically functional analysis, a series is unconditionally convergent if all reorderings of the series converge to the same value. In contrast, a series is conditionally convergent if it converges but different orderings do not all converge to that same value. Unconditional convergence is equivalent to absolute convergence in finite-dimensional vector spaces, but is a weaker property in infinite dimensions.

In mathematics, the Cauchy condensation test, named after Augustin-Louis Cauchy, is a standard convergence test for infinite series. For a non-increasing sequence of non-negative real numbers, the series converges if and only if the "condensed" series converges. Moreover, if they converge, the sum of the condensed series is no more than twice as large as the sum of the original.

In mathematics, convergence tests are methods of testing for the convergence, conditional convergence, absolute convergence, interval of convergence or divergence of an infinite series .

In probability theory, Kolmogorov's Three-Series Theorem, named after Andrey Kolmogorov, gives a criterion for the almost sure convergence of an infinite series of random variables in terms of the convergence of three different series involving properties of their probability distributions. Kolmogorov's three-series theorem, combined with Kronecker's lemma, can be used to give a relatively easy proof of the Strong Law of Large Numbers.

In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and

In mathematics, Kingman's subadditive ergodic theorem is one of several ergodic theorems. It can be seen as a generalization of Birkhoff's ergodic theorem. Intuitively, the subadditive ergodic theorem is a kind of random variable version of Fekete's lemma. As a result, it can be rephrased in the language of probability, e.g. using a sequence of random variables and expected values. The theorem is named after John Kingman.

In mathematics, the field of logarithmic-exponential transseries is a non-Archimedean ordered differential field which extends comparability of asymptotic growth rates of elementary nontrigonometric functions to a much broader class of objects. Each log-exp transseries represents a formal asymptotic behavior, and it can be manipulated formally, and when it converges, corresponds to actual behavior. Transseries can also be convenient for representing functions. Through their inclusion of exponentiation and logarithms, transseries are a strong generalization of the power series at infinity and other similar asymptotic expansions.

References

  1. Schaefer, Paul (1981). "Sum-preserving rearrangements of infinite series" (PDF). Amer. Math. Monthly. 88 (1): 33–40.
  2. Agnew, Ralph Palmer (1955). "Permutations preserving convergence of series" (PDF). Proc. Amer. Math. Soc. 6 (4): 563–564.