Agrawal's conjecture

Last updated

In number theory, Agrawal's conjecture, due to Manindra Agrawal in 2002, [1] forms the basis for the cyclotomic AKS test. Agrawal's conjecture states formally:

Contents

Let and be two coprime positive integers. If

then either is prime or

Ramifications

If Agrawal's conjecture were true, it would decrease the runtime complexity of the AKS primality test from to .

Truth or falsehood

The conjecture was formulated by Rajat Bhattacharjee and Prashant Pandey in their 2001 thesis. [2] It has been computationally verified for and , [3] and for . [4]

However, a heuristic argument by Carl Pomerance and Hendrik W. Lenstra suggests there are infinitely many counterexamples. [5] In particular, the heuristic shows that such counterexamples have asymptotic density greater than for any .

Assuming Agrawal's conjecture is false by the above argument, Roman B. Popovych conjectures a modified version may still be true:

Let and be two coprime positive integers. If

and

then either is prime or . [6]

Distributed computing

Both Agrawal's conjecture and Popovych's conjecture were tested by distributed computing project Primaboinca which ran from 2010 to 2020, based on BOINC. The project found no counterexample, searching in .

Notes

  1. Agrawal, Manindra; Kayal, Neeraj; Saxena, Nitin (2004). "PRIMES is in P" (PDF). Annals of Mathematics . 160 (2): 781–793. doi: 10.4007/annals.2004.160.781 . JSTOR   3597229.
  2. Rajat Bhattacharjee, Prashant Pandey (April 2001). "Primality Testing". Technical Report. IIT Kanpur.
  3. Neeraj Kayal, Nitin Saxena (2002). "Towards a deterministic polynomial-time Primality Test". Technical Report. IIT Kanpur. CiteSeerX   10.1.1.16.9281 .
  4. Saxena, Nitin (Dec 2014). "Primality & Prime Number Generation" (PDF). UPMC Paris. Archived from the original (PDF) on 25 April 2018. Retrieved 24 April 2018.
  5. Lenstra, H. W.; Pomerance, Carl (2003). "Remarks on Agrawal's conjecture" (PDF). American Institute of Mathematics. Retrieved 16 October 2013.
  6. Popovych, Roman (30 December 2008), A note on Agrawal conjecture (PDF), retrieved 21 April 2018

Related Research Articles

<span class="mw-page-title-main">Carmichael number</span> Composite number in number theory

In number theory, a Carmichael number is a composite number , which in modular arithmetic satisfies the congruence relation:

In number theory, integer factorization is the decomposition, when possible, of a positive integer into a product of smaller integers. If the factors are further restricted to be prime numbers, the process is called prime factorization, and includes the test whether the given integer is prime.

Fermat's little theorem states that if p is a prime number, then for any integer a, the number is an integer multiple of p. In the notation of modular arithmetic, this is expressed as

The Jacobi symbol is a generalization of the Legendre symbol. Introduced by Jacobi in 1837, it is of theoretical interest in modular arithmetic and other branches of number theory, but its main use is in computational number theory, especially primality testing and integer factorization; these in turn are important in cryptography.

The Fermat primality test is a probabilistic test to determine whether a number is a probable prime.

A primality test is an algorithm for determining whether an input number is prime. Among other fields of mathematics, it is used for cryptography. Unlike integer factorization, primality tests do not generally give prime factors, only stating whether the input number is prime or not. Factorization is thought to be a computationally difficult problem, whereas primality testing is comparatively easy. Some primality tests prove that a number is prime, while others like Miller–Rabin prove that a number is composite. Therefore, the latter might more accurately be called compositeness tests instead of primality tests.

The Miller–Rabin primality test or Rabin–Miller primality test is a probabilistic primality test: an algorithm which determines whether a given number is likely to be prime, similar to the Fermat primality test and the Solovay–Strassen primality test.

In arithmetic, an odd composite integer n is called an Euler pseudoprime to base a, if a and n are coprime, and

In computational number theory, the Lucas test is a primality test for a natural number n; it requires that the prime factors of n − 1 be already known. It is the basis of the Pratt certificate that gives a concise verification that n is prime.

The AKS primality test is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P". The algorithm was the first one which is able to determine in polynomial time, whether a given number is prime or composite and this without relying on mathematical conjectures such as the generalized Riemann hypothesis. The proof is also notable for not relying on the field of analysis. In 2006 the authors received both the Gödel Prize and Fulkerson Prize for their work.

The Solovay–Strassen primality test, developed by Robert M. Solovay and Volker Strassen in 1977, is a probabilistic test to determine if a number is composite or probably prime. The idea behind the test was discovered by M. M. Artjuhov in 1967 (see Theorem E in the paper). This test has been largely superseded by the Baillie–PSW primality test and the Miller–Rabin primality test, but has great historical importance in showing the practical feasibility of the RSA cryptosystem. The Solovay–Strassen test is essentially an Euler–Jacobi probable prime test.

In number theory the Agoh–Giuga conjecture on the Bernoulli numbers Bk postulates that p is a prime number if and only if

A strong pseudoprime is a composite number that passes the Miller–Rabin primality test. All prime numbers pass this test, but a small fraction of composites also pass, making them "pseudoprimes".

<span class="mw-page-title-main">Manindra Agrawal</span> Computer scientist

Manindra Agrawal is a professor at the Department of Computer Science and Engineering at the Indian Institute of Technology, Kanpur. He was the recipient of the first Infosys Prize for Mathematics, the Godel Prize in 2006; and the Shanti Swarup Bhatnagar Award in Mathematical Sciences in 2003. He has been honoured with Padma Shri in 2013.

The Fulkerson Prize for outstanding papers in the area of discrete mathematics is sponsored jointly by the Mathematical Optimization Society (MOS) and the American Mathematical Society (AMS). Up to three awards of $1,500 each are presented at each (triennial) International Symposium of the MOS. Originally, the prizes were paid out of a memorial fund administered by the AMS that was established by friends of the late Delbert Ray Fulkerson to encourage mathematical excellence in the fields of research exemplified by his work. The prizes are now funded by an endowment administered by MPS.

Neeraj Kayal is an Indian computer scientist and mathematician noted for development of the AKS primality test, along with Manindra Agrawal and Nitin Saxena. Kayal was born and raised in Guwahati, India.

<span class="mw-page-title-main">Nitin Saxena</span> Indian mathematician and computer scientist

Nitin Saxena is an Indian scientist in mathematics and theoretical computer science. His research focuses on computational complexity.

In mathematics, the rational sieve is a general algorithm for factoring integers into prime factors. It is a special case of the general number field sieve. While it is less efficient than the general algorithm, it is conceptually simpler. It serves as a helpful first step in understanding how the general number field sieve works.

In mathematics and computer science, a primality certificate or primality proof is a succinct, formal proof that a number is prime. Primality certificates allow the primality of a number to be rapidly checked without having to run an expensive or unreliable primality test. "Succinct" usually means that the proof should be at most polynomially larger than the number of digits in the number itself.

In mathematics, elliptic curve primality testing techniques, or elliptic curve primality proving (ECPP), are among the quickest and most widely used methods in primality proving. It is an idea put forward by Shafi Goldwasser and Joe Kilian in 1986 and turned into an algorithm by A. O. L. Atkin the same year. The algorithm was altered and improved by several collaborators subsequently, and notably by Atkin and François Morain, in 1993. The concept of using elliptic curves in factorization had been developed by H. W. Lenstra in 1985, and the implications for its use in primality testing followed quickly.