Andrew Steele (astrobiologist)

Last updated

Andrew Steele is an astrobiologist at the Geophysical Laboratory at Carnegie Institution for Science. He uses traditional and biotechnological approaches for the detection of microbial life in the field of astrobiology and Solar System exploration. [1] His research has led to discoveries of new forms of carbon in meteorites, new mechanisms of organic synthesis on Earth and Mars, and the presence of water in lunar and Martian rocks. [2] Steele has developed several instrument and mission concepts for future Mars missions and was involved in NASA’s 2011 Mars Science Laboratory mission, as a member of the Sample Analysis at Mars team. He also tested instruments on board the Arctic Mars Analogue Svalbard Expedition in the Arctic. [1] [2]

Contents

Education and career

Steele attended the University of Central Lancashire in the United Kingdom where he received a B.S. in microbiology and biochemistry in 1992.  In 1996, he earned a PhD in biotechnology from the University of Portsmouth. [3] [2] [1]  From 1999 to 2001, Steele worked as an assistant professor at the University of Montana, and as a researcher at the University of Oxford.  From 1999 to 2003, he was a lecturer at the University of Portsmouth. After 2003, Steele was a postdoctoral fellow at NASA Johnson Space Center. He now currently works for the Carnegie Institution of Science and is an active member of the NASA Astrobiology Institute. [3]

Research

Steele’s research focuses on the detection of microbial life on Mars.  He creates instrument and mission concepts for Mars missions. [1]  Steele uses a technique called “high-resolution confocal Raman imaging,” [2] [4] which is used to analyze samples collected during missions.  He and his team used this technique to analyze samples from Mars in 2012 and identified hydrocarbons, which are important for organic chemistry reactions and play key roles in the creation of life. [5] [6] [7] By studying these hydrocarbons, Steele was able to prove that the hydrocarbons did not come from biological origins, but rather from volcanic activity on Mars. [6] [7] [8] Steele is currently investigating a new Martian meteorite, which contains more water than any other Martian meteorite found before, as well as hydrocarbons. Similar to his 2012 discovery, Steele was able to determine that the hydrocarbons did not result from contamination, but from a non-biological process, helping to answer important questions about the origin of life. [9] [5]  Collectively, his investigations have helped inform discussion about the potential habitability of Mars. [10] [3]

Awards

In 2012, the Royal Society of London awarded Steele the Wolfson Professorial Award. [3]

Related Research Articles

<span class="mw-page-title-main">Astrobiology</span> Science concerned with life in the universe

Astrobiology is a scientific field within the life and environmental sciences that studies the origins, early evolution, distribution, and future of life in the universe by investigating its deterministic conditions and contingent events. As a discipline, astrobiology is founded on the premise that life may exist beyond Earth.

<span class="mw-page-title-main">Allan Hills 84001</span> Martian meteorite discovered in Antarctica in 1984

Allan Hills 84001 (ALH84001) is a fragment of a Martian meteorite that was found in the Allan Hills in Antarctica on December 27, 1984, by a team of American meteorite hunters from the ANSMET project. Like other members of the shergottite–nakhlite–chassignite (SNC) group of meteorites, ALH84001 is thought to have originated on Mars. However, it does not fit into any of the previously discovered SNC groups. Its mass upon discovery was 1.93 kilograms (4.3 lb).

<span class="mw-page-title-main">Mars rover</span> Robotic vehicle for Mars surface exploration

A Mars rover is a motor vehicle designed to travel on the surface of Mars. Rovers have several advantages over stationary landers: they examine more territory, they can be directed to interesting features, they can place themselves in sunny positions to weather winter months, and they can advance the knowledge of how to perform very remote robotic vehicle control. They serve a different purpose than orbital spacecraft like Mars Reconnaissance Orbiter. A more recent development is the Mars helicopter.

<span class="mw-page-title-main">Life on Mars</span> Scientific assessments on the microbial habitability of Mars

The possibility of life on Mars is a subject of interest in astrobiology due to the planet's proximity and similarities to Earth. To date, no proof of past or present life has been found on Mars. Cumulative evidence suggests that during the ancient Noachian time period, the surface environment of Mars had liquid water and may have been habitable for microorganisms, but habitable conditions do not necessarily indicate life.

A biosignature is any substance – such as an element, isotope, or molecule – or phenomenon that provides scientific evidence of past or present life. Measurable attributes of life include its complex physical or chemical structures and its use of free energy and the production of biomass and wastes. A biosignature can provide evidence for living organisms outside the Earth and can be directly or indirectly detected by searching for their unique byproducts.

<span class="mw-page-title-main">Viking lander biological experiments</span>

In 1976 two identical Viking program landers each carried four types of biological experiments to the surface of Mars. The first successful Mars landers, Viking 1 and Viking 2, then carried out experiments to look for biosignatures of microbial life on Mars. The landers each used a robotic arm to pick up and place soil samples into sealed test containers on the craft.

<span class="mw-page-title-main">Astrobiology Field Laboratory</span> Canceled Mars rover concept by NASA

The Astrobiology Field Laboratory (AFL) was a proposed NASA rover that would have conducted a search for life on Mars. This proposed mission, which was not funded, would have landed a rover on Mars in 2016 and explore a site for habitat. Examples of such sites are an active or extinct hydrothermal deposit, a dry lake or a specific polar site.

<span class="mw-page-title-main">Extraterrestrial materials</span> Natural objects that originated in outer space

Extraterrestrial material refers to natural objects now on Earth that originated in outer space. Such materials include cosmic dust and meteorites, as well as samples brought to Earth by sample return missions from the Moon, asteroids and comets, as well as solar wind particles.

<span class="mw-page-title-main">EXPOSE</span> External facility on the ISS dedicated to astrobiology experiments

EXPOSE is a multi-user facility mounted outside the International Space Station (ISS) dedicated to astrobiology. EXPOSE was developed by the European Space Agency (ESA) for long-term spaceflights and was designed to allow exposure of chemical and biological samples to outer space while recording data during exposure.

<span class="mw-page-title-main">Mars Astrobiology Explorer-Cacher</span> Cancelled NASA Mars rover concept

The Mars Astrobiology Explorer-Cacher (MAX-C), also known as Mars 2018 mission, was a NASA concept for a Mars rover mission, proposed to be launched in 2018 together with the European ExoMars rover. The MAX-C rover concept was cancelled in April 2011 due to budget cuts.

Interplanetary contamination refers to biological contamination of a planetary body by a space probe or spacecraft, either deliberate or unintentional.

Rosalind Franklin, previously known as the ExoMars rover, is a planned robotic Mars rover, part of the international ExoMars programme led by the European Space Agency and the Russian Roscosmos State Corporation. The mission was scheduled to launch in July 2020, but was postponed to 2022. The 2022 Russian invasion of Ukraine has caused an indefinite delay of the programme, as the member states of the ESA voted to suspend the joint mission with Russia; in July 2022, ESA terminated its cooperation on the project with Russia. As of May 2022, the launch of the rover is not expected to occur before 2028 due to the need for a new non-Russian landing platform.

<span class="mw-page-title-main">Sample Analysis at Mars</span>

Sample Analysis at Mars (SAM) is a suite of instruments on the Mars Science Laboratory Curiosity rover. The SAM instrument suite will analyze organics and gases from both atmospheric and solid samples. It was developed by the NASA Goddard Space Flight Center, the Laboratoire des Atmosphères Milieux Observations Spatiales (LATMOS) associated to the Laboratoire Inter-Universitaire des Systèmes Atmosphériques (LISA), and Honeybee Robotics, along with many additional external partners.

<span class="mw-page-title-main">Timeline of Mars Science Laboratory</span> Event timeline of the NASA Mars Science Laboratory mission

The Mars Science Laboratory and its rover, Curiosity, were launched from Earth on November 26, 2011. As of August 28, 2023, Curiosity has been on the planet Mars for 3931 sols since landing on August 6, 2012. (See Current status.)

<span class="mw-page-title-main">Icebreaker Life</span>

Icebreaker Life is a Mars lander mission concept proposed to NASA's Discovery Program. The mission involves a stationary lander that would be a near copy of the successful 2008 Phoenix and InSight spacecraft, but would carry an astrobiology scientific payload, including a drill to sample ice-cemented ground in the northern plains to conduct a search for biosignatures of current or past life on Mars.

<span class="mw-page-title-main">Yamato 000593</span>

Yamato 000593 is the second largest meteorite from Mars found on Earth. Studies suggest the Martian meteorite was formed about 1.3 billion years ago from a lava flow on Mars. An impact occurred on Mars about 11 million years ago and ejected the meteorite from the Martian surface into space. The meteorite landed on Earth in Antarctica about 50,000 years ago. The mass of the meteorite is 13.7 kg (30 lb) and has been found to contain evidence of past water alteration.

Infrared Spectrometer for ExoMars (ISEM) is an infrared spectrometer for remote sensing that is part of the science payload on board the European Space Agency'sRosalind Franklin rover, tasked to search for biosignatures and biomarkers on Mars. The rover is planned to be launched in August–October 2022 and land on Mars in spring 2023.

Christopher R. Glein is an American geochemist at the Southwest Research Institute in San Antonio, TX. He studies planetary science, astrobiology, and organic geochemistry. Glein was the first to describe how Saturn's moon Enceladus is the only known body, besides Earth, that has all of the requirements necessary for life. Glein has been involved in multiple spacecraft missions, leading to significant findings about Pluto, Enceladus, and Titan. In 2017, he was recognized for Outstanding Contributions to the ESA Rosetta Mission by the European Space Agency.

<span class="mw-page-title-main">Natural methane on Mars</span>

The reported presence of methane in the atmosphere of Mars is of interest to many geologists and astrobiologists, as methane may indicate the presence of microbial life on Mars, or a geochemical process such as volcanism or hydrothermal activity.

<span class="mw-page-title-main">Jennifer Eigenbrode</span> American astrobiologist

Jennifer Eigenbrode is an interdisciplinary astrobiologist who works at NASA's Goddard Space Flight Center. She specializes in organic chemistry, geology, and organic bio-geochemistry of martian and ocean-world environments.

References

  1. 1 2 3 4 "Andrew Steele | Geophysical Laboratory". legacy.gl.ciw.edu. Archived from the original on 2019-03-28. Retrieved 2019-03-28.
  2. 1 2 3 4 "Steele". Geophysical Laboratory. 2016-07-06. Retrieved 2019-03-28.
  3. 1 2 3 4 Science, Carnegie (2014-11-12). "Andrew Steele". Carnegie Institution for Science. Retrieved 2019-03-28.
  4. Andrew SteeleCarnegie Institution for Science · Department of Geophysical Laboratory 44. 64 · PhD. "Andrew Steele | PhD | Carnegie Institution for Science, Washington | Department of Geophysical Laboratory". ResearchGate. Retrieved 2019-03-28.
  5. 1 2 Mardell, Mark (2012-05-25). "Mars 'has life's building blocks'" . Retrieved 2019-03-28.
  6. 1 2 Schulze-Makuch, Dirk. "Where Did the Organic Matter on Mars Come From?". Air & Space Magazine. Retrieved 2019-03-28.
  7. 1 2 "NASA finds ancient organic material, mysterious methane on Mars". ScienceDaily. Retrieved 2019-03-28.
  8. "Mars' Organic Carbon 'Batteries' Point to Biology --"Major Implications for Habitability"". The Daily Galaxy. 2018-11-01. Retrieved 2019-03-28.
  9. Jeung, Tiffany. "How Natural Martian Batteries Create the Building Blocks of Life". Inverse. Retrieved 2019-03-28.
  10. "| NASA Astrobiology Institute". nai.nasa.gov. Retrieved 2019-03-28.