In algebra, a commutative Noetherian ring A is said to have the approximation property with respect to an ideal I if each finite system of polynomial equations with coefficients in A has a solution in A if and only if it has a solution in the I-adic completion of A. [1] [2] The notion of the approximation property is due to Michael Artin.
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.
In arithmetic geometry, the Mordell conjecture is the conjecture made by Mordell (1922) that a curve of genus greater than 1 over the field Q of rational numbers has only finitely many rational points. In 1983 it was proved by Gerd Faltings, and is now known as Faltings's theorem. The conjecture was later generalized by replacing Q by any number field.
The modularity theorem states that elliptic curves over the field of rational numbers are related to modular forms. Andrew Wiles proved the modularity theorem for semistable elliptic curves, which was enough to imply Fermat's Last Theorem. Later, Christophe Breuil, Brian Conrad, Fred Diamond and Richard Taylor extended Wiles' techniques to prove the full modularity theorem in 2001.
John Torrence Tate Jr. was an American mathematician, distinguished for many fundamental contributions in algebraic number theory, arithmetic geometry and related areas in algebraic geometry. He was awarded the Abel Prize in 2010.
In mathematics, Ribet's theorem is a statement in number theory concerning properties of Galois representations associated with modular forms. It was proposed by Jean-Pierre Serre and proven by Ken Ribet. The proof of the epsilon conjecture was a significant step towards the proof of Fermat's Last Theorem. As shown by Serre and Ribet, the Taniyama–Shimura conjecture and the epsilon conjecture together imply that Fermat's Last Theorem is true.
In mathematics, Roth's theorem is a fundamental result in diophantine approximation to algebraic numbers. It is of a qualitative type, stating that a given algebraic number may not have too many rational number approximations, that are 'very good'. Over half a century, the meaning of very good here was refined by a number of mathematicians, starting with Joseph Liouville in 1844 and continuing with work of Axel Thue (1909), Carl Ludwig Siegel (1921), Freeman Dyson (1947), and Klaus Roth (1955).
In mathematics, the Fermat curve is the algebraic curve in the complex projective plane defined in homogeneous coordinates (X:Y:Z) by the Fermat equation
Geometric group theory is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these groups act.
In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. Arithmetic geometry is centered around Diophantine geometry, the study of rational points of algebraic varieties.
In mathematics, the Artin approximation theorem is a fundamental result of Michael Artin (1969) in deformation theory which implies that formal power series with coefficients in a field k are well-approximated by the algebraic functions on k.
In number theory, the Chevalley–Warning theorem implies that certain polynomial equations in sufficiently many variables over a finite field have solutions. It was proved by Ewald Warning (1935) and a slightly weaker form of the theorem, known as Chevalley's theorem, was proved by Chevalley (1935). Chevalley's theorem implied Artin's and Dickson's conjecture that finite fields are quasi-algebraically closed fields.
A height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algebraic varieties to the real numbers.
In mathematics, real algebraic geometry is the sub-branch of algebraic geometry studying real algebraic sets, i.e. real-number solutions to algebraic equations with real-number coefficients, and mappings between them.
In mathematics, the Schneider–Lang theorem is a refinement by Lang (1966) of a theorem of Schneider (1949) about the transcendence of values of meromorphic functions. The theorem implies both the Hermite–Lindemann and Gelfond–Schneider theorems, and implies the transcendence of some values of elliptic functions and elliptic modular functions.
In mathematics, the Walter theorem, proved by John H. Walter, describes the finite groups whose Sylow 2-subgroup is abelian. Bender (1970) used Bender's method to give a simpler proof.
In mathematics, the Langlands–Deligne local constant is an elementary function associated with a representation of the Weil group of a local field. The functional equation
Christopher Deninger is a German mathematician at the University of Münster.
Lee Albert Rubel was a mathematician renowned for his contributions to analog computing.
In commutative algebra and algebraic geometry, Popescu's theorem, introduced by Dorin Popescu, states:
Christel Rotthaus is a professor of mathematics at Michigan State University. She is known for her research in commutative algebra.
This algebra-related article is a stub. You can help Wikipedia by expanding it. |