Arginine/lysine

Last updated

Arginine/lysine
Combination of
Arginine Amino acid
Lysine Amino acid
Clinical data
Trade names Lysakare
Routes of
administration
Intravenous infusion
ATC code
Legal status
Legal status
  • UK: POM (Prescription only) [1]
  • EU:Rx-only [2]
Identifiers
CAS Number
KEGG

Arginine/lysine, sold under the brand name Lysakare, is a fixed-dose combination medication used to protect the kidneys from radiation damage during cancer treatment with a radioactive medicine called lutetium (177Lu) oxodotreotide. [2] It contains L-arginine hydrochloride and L-lysine hydrochloride. [2]

The most common side effects include nausea and vomiting. [2] Arginine/lysine is also associated with hyperkalaemia (high blood potassium levels), but the frequency of this side effect is not known. [2] Side effects with arginine/lysine are usually mild or moderate. [2]

Radiation from lutetium (177Lu) oxodotreotide can cause damage when the medicine passes through tubules in the kidney. [2] Arginine and lysine interfere with the passage of lutetium (177Lu) oxodotreotide through these kidney tubules. [2] As a result, the radioactive medicine leaves the body in the urine and the kidneys are exposed to less radiation. [2]

Arginine/lysine was approved for medical use in the European Union in July 2019. [2]

Medical uses

Arginine/lysine is indicated for reduction of renal radiation exposure during peptide receptor radionuclide therapy (PRRT) with lutetium (177Lu) oxodotreotide in adults. [2]

Related Research Articles

<span class="mw-page-title-main">Lutetium</span> Chemical element with atomic number 71 (Lu)

Lutetium is a chemical element; it has symbol Lu and atomic number 71. It is a silvery white metal, which resists corrosion in dry air, but not in moist air. Lutetium is the last element in the lanthanide series, and it is traditionally counted among the rare earth elements; it can also be classified as the first element of the 6th-period transition metals.

<span class="mw-page-title-main">Arginine</span> Amino acid

Arginine is the amino acid with the formula (H2N)(HN)CN(H)(CH2)3CH(NH2)CO2H. The molecule features a guanidino group appended to a standard amino acid framework. At physiological pH, the carboxylic acid is deprotonated (−CO2) and both the amino and guanidino groups are protonated, resulting in a cation. Only the l-arginine (symbol Arg or R) enantiomer is found naturally. Arg residues are common components of proteins. It is encoded by the codons CGU, CGC, CGA, CGG, AGA, and AGG. The guanidine group in arginine is the precursor for the biosynthesis of nitric oxide. Like all amino acids, it is a white, water-soluble solid.

<span class="mw-page-title-main">Acute radiation syndrome</span> Health problems caused by high levels of ionizing radiation

Acute radiation syndrome (ARS), also known as radiation sickness or radiation poisoning, is a collection of health effects that are caused by being exposed to high amounts of ionizing radiation in a short period of time. Symptoms can start within an hour of exposure, and can last for several months. Early symptoms are usually nausea, vomiting and loss of appetite. In the following hours or weeks, initial symptoms may appear to improve, before the development of additional symptoms, after which either recovery or death follow.

Ionizing radiation, including nuclear radiation, consists of subatomic particles or electromagnetic waves that have sufficient energy to ionize atoms or molecules by detaching electrons from them. Some particles can travel up to 99% of the speed of light, and the electromagnetic waves are on the high-energy portion of the electromagnetic spectrum.

<span class="mw-page-title-main">Vasopressin</span> Mammalian hormone released from the pituitary gland

Human vasopressin, also called antidiuretic hormone (ADH), arginine vasopressin (AVP) or argipressin, is a hormone synthesized from the AVP gene as a peptide prohormone in neurons in the hypothalamus, and is converted to AVP. It then travels down the axon terminating in the posterior pituitary, and is released from vesicles into the circulation in response to extracellular fluid hypertonicity (hyperosmolality). AVP has two primary functions. First, it increases the amount of solute-free water reabsorbed back into the circulation from the filtrate in the kidney tubules of the nephrons. Second, AVP constricts arterioles, which increases peripheral vascular resistance and raises arterial blood pressure.

Radionuclide therapy uses radioactive substances called radiopharmaceuticals to treat medical conditions, particularly cancer. These are introduced into the body by various means and localise to specific locations, organs or tissues depending on their properties and administration routes. This includes anything from a simple compound such as sodium iodide that locates to the thyroid via trapping the iodide ion, to complex biopharmaceuticals such as recombinant antibodies which are attached to radionuclides and seek out specific antigens on cell surfaces.

A radioligand is a microscopic particle which consists of a therapeutic radioactive isotope and the cell-targeting compound - the ligand. The ligand is the target binding site, it may be on the surface of the targeted cancer cell for therapeutic purposes. Radioisotopes can occur naturally or be synthesized and produced in a cyclotron/nuclear reactor. The different types of radioisotopes include Y-90, H-3, C-11, Lu-177, Ac-225, Ra-223, In-111, I-131, I-125, etc. Thus, radioligands must be produced in special nuclear reactors for the radioisotope to remain stable. Radioligands can be used to analyze/characterize receptors, to perform binding assays, to help in diagnostic imaging, and to provide targeted cancer therapy. Radiation is a novel method of treating cancer and is effective in short distances along with being unique/personalizable and causing minimal harm to normal surrounding cells. Furthermore, radioligand binding can provide information about receptor-ligand interactions in vitro and in vivo. Choosing the right radioligand for the desired application is important. The radioligand must be radiochemically pure, stable, and demonstrate a high degree of selectivity, and high affinity for their target.

<span class="mw-page-title-main">Amiloride</span> Medication

Amiloride, sold under the trade name Midamor among others, is a medication typically used with other medications to treat high blood pressure or swelling due to heart failure or cirrhosis of the liver. Amiloride is classified as a potassium-sparing diuretic. Amiloride is often used together with another diuretic, such as a thiazide or loop diuretic. It is taken by mouth. Onset of action is about two hours and it lasts for about a day.

<span class="mw-page-title-main">Cinacalcet</span> Chemical compound

Cinacalcet, sold under the brand name Sensipar among others, is a medication used to treat primary hyperparathyroidism, tertiary hyperparathyroidism and parathyroid carcinoma. Cinacalcet acts as a calcimimetic by allosteric activation of the calcium-sensing receptor that is expressed in various human organ tissues.

Naturally occurring lutetium (71Lu) is composed of one stable isotope 175Lu and one long-lived radioisotope, 176Lu with a half-life of 37 billion years. Forty radioisotopes have been characterized, with the most stable, besides 176Lu, being 174Lu with a half-life of 3.31 years, and 173Lu with a half-life of 1.37 years. All of the remaining radioactive isotopes have half-lives that are less than 9 days, and the majority of these have half-lives that are less than half an hour. This element also has 18 meta states, with the most stable being 177mLu, 174mLu and 178mLu.

<span class="mw-page-title-main">Dapagliflozin</span> Diabetes medication

Dapagliflozin, sold under the brand names Farxiga (US) and Forxiga (EU) among others, is a medication used to treat type 2 diabetes. It is also used to treat adults with heart failure and chronic kidney disease. It reversibly inhibits sodium-glucose co-transporter 2 (SGLT-2) in the renal proximal convoluted tubule to reduce glucose reabsorption and increase urinary glucose excretion.

Ioflupane (<sup>123</sup>I) Chemical compound

Ioflupane (123I) is the international nonproprietary name (INN) of a cocaine analogue which is a neuro-imaging radiopharmaceutical drug, used in nuclear medicine for the diagnosis of Parkinson's disease and the differential diagnosis of Parkinson's disease over other disorders presenting similar symptoms. During the DaT scan procedure it is injected into a patient and viewed with a gamma camera in order to acquire SPECT images of the brain with particular respect to the striatum, a subcortical region of the basal ganglia. The drug is sold under the brand name Datscan and is manufactured by GE Healthcare, formerly Amersham plc.

<span class="mw-page-title-main">Tivozanib</span> Medication

Tivozanib, sold under the brand name Fotivda, is a medication used for the treatment of advanced renal cell carcinoma. It is an oral VEGF receptor tyrosine kinase inhibitor.

<span class="mw-page-title-main">DOTA-TATE</span> Eight amino-acid long peptide covalently bonded to a DOTA chelator

DOTA-TATE is an eight amino acid long peptide, with a covalently bonded DOTA bifunctional chelator.

<span class="mw-page-title-main">Edotreotide</span> Chemical compound

Edotreotide (USAN, also known as (DOTA0-Phe1-Tyr3) octreotide, DOTA-TOC, DOTATOC) is a substance which, when bound to various radionuclides, is used in the treatment and diagnosis of certain types of cancer. When used therapeutically it is an example of peptide receptor radionuclide therapy.

Advanced Accelerator Applications is a France-based pharmaceutical group, specialized in the field of nuclear medicine. The group operates in all three segments of nuclear medicine to diagnose and treat serious conditions in the fields of oncology, neurology, cardiology, infectious and inflammatory diseases.

<span class="mw-page-title-main">Peptide receptor radionuclide therapy</span> Type of radiotherapy

Peptide receptor radionuclide therapy (PRRT) is a type of radionuclide therapy, using a radiopharmaceutical that targets peptide receptors to deliver localised treatment, typically for neuroendocrine tumours (NETs).

Lutetium (<sup>177</sup>Lu) chloride Radioactive compound used for radiopharmaceutical labeling

Lutetium (177Lu) chloride is a radioactive compound used for the radiolabeling of pharmaceutical molecules, aimed either as an anti-cancer therapy or for scintigraphy. It is an isotopomer of lutetium(III) chloride containing the radioactive isotope 177Lu, which undergoes beta decay with a half-life of 6.64 days.

Lutetium (<sup>177</sup>Lu) oxodotreotide Chelate of Lu-177 with dotatate, a peptide derivative bound to a DOTA molecule

Lutetium (177Lu) oxodotreotide (INN) or 177Lu dotatate, brand name Lutathera, is a chelated complex of a radioisotope of the element lutetium with dotatate, used in peptide receptor radionuclide therapy. Specifically, it is used in the treatment of cancers which express somatostatin receptors. It is a radiolabeled somatostatin analog.

Lutetium (<sup>177</sup>Lu) vipivotide tetraxetan Radiopharmaceutical medication

Lutetium (177Lu) vipivotide tetraxetan, sold under the brand name Pluvicto, is a radiopharmaceutical medication used for the treatment of prostate-specific membrane antigen (PSMA)-positive metastatic castration-resistant prostate cancer (mCRPC). Lutetium (177Lu) vipivotide tetraxetan is a targeted radioligand therapy.

References

  1. "Lysakare Summary of Product Characteristics (SmPC)". (emc). 2 May 2024. Retrieved 24 May 2024.
  2. 1 2 3 4 5 6 7 8 9 10 11 "Lysakare EPAR". European Medicines Agency (EMA). 24 May 2019. Retrieved 22 July 2020. Text was copied from this source which is copyright European Medicines Agency. Reproduction is authorized provided the source is acknowledged.