Artin's theorem on induced characters

Last updated

In representation theory, a branch of mathematics, Artin's theorem, introduced by E. Artin, states that a character on a finite group is a rational linear combination of characters induced from all cyclic subgroups of the group.

Contents

There is a similar but somehow more precise theorem due to Brauer, which says that the theorem remains true if "rational" and "cyclic subgroup" are replaced with "integer" and "elementary subgroup".

Statement

In Linear Representation of Finite Groups Serre states in Chapter 9.2, 17 [1] the theorem in the following, more general way:

Let finite group, family of subgroups.

Then the following are equivalent:

This in turn implies the general statement, by choosing as all cyclic subgroups of .

Proof

Let be a finite groupe and its irreducible characters. Let us denote, like Serre did in its book, the -module . Since all of 's characters are a linear combination of with positive integer coefficient, the elements of are the difference of 2 characters of . Moreover, because the product of 2 characters is also a character, is even a ring, a sub-ring of the -algebra of the class function over ( of which forms a basis ), which, by tensor product, is isomorphic to . Both the restriction of the representation of to one of its subgroup and its dual operator of induction of a representation can be extended to an homomorphisme :

With those notations, the theorem can be equivalently re-write as follow : If is a family of subgroup of , the following properties are equivalents :

  1. is the reunions of the conjugate of the subgroups of
  2. The cokernel of is finite.

This result from the fact that is of finite type. Before getting to the proof of it, understand that the morphisme , naturally defined by is well defined because is finite ( because is ) and its cokernel is .

Let’s begin the proof with the implication 2. 1. Starting with the following lemma :

Let be an element of . Then for every , is null on if isn’t conjugate to any of . It is enough to prove this assertion for the character of a representation of H ( as is a difference of some ). Let be the induced representation of by . Let now be a system of representative of ,by definition, V is the direct sum of the transformed of which is a permutation. Indeed where for some . To evaluate , we can now choose a basis of reunion of basis of the . In such a basis, the diagonal of the matrix of is null at every , and because would imply ( which is ruled out by hypothesis ), it is fully null, we thus have which conclude the proof of the lemma.

This particularly insure that, for every element not in , the elements in the image of , which are the evaluate to zero on . The prolonged morphisme has to be surjective. Indeed if not, its cokernel would contain a for some in , which in turn means the multiples of are distinct elements of the cokernel of contradicting its finitude. Particularly, every element of are thus null on the complementary of , insuring , thereby concluding the implication.

Let’s now prove 1. 2. To do so, it is enough to prove that the -linear application is surjective ( indeed, in that case, would admit a basis composed of element of the image of the . It would thus have the same cardinality , than , insuring that the quotient is isomorphic to some which is finite - where the are non-trivial ideals of ), which, through duality, is equivalent to prove the injectivity of Which is obvious : indeed this is equivalent to say that if a class function is null on ( at least ) one element of each class of conjugation of , it is null ( but class function are constant on conjugation class ).

This conclude the proof of the theorem.

Related Research Articles

In mathematics, the Peter–Weyl theorem is a basic result in the theory of harmonic analysis, applying to topological groups that are compact, but are not necessarily abelian. It was initially proved by Hermann Weyl, with his student Fritz Peter, in the setting of a compact topological group G. The theorem is a collection of results generalizing the significant facts about the decomposition of the regular representation of any finite group, as discovered by Ferdinand Georg Frobenius and Issai Schur.

In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the given group. As a ring, its addition law is that of the free module and its multiplication extends "by linearity" the given group law on the basis. Less formally, a group ring is a generalization of a given group, by attaching to each element of the group a "weighting factor" from a given ring.

In group theory, the induced representation is a representation of a group, G, which is constructed using a known representation of a subgroup H. Given a representation of H, the induced representation is, in a sense, the "most general" representation of G that extends the given one. Since it is often easier to find representations of the smaller group H than of G, the operation of forming induced representations is an important tool to construct new representations.

<span class="mw-page-title-main">Cayley graph</span> Graph defined from a mathematical group

In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group, is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem, and uses a specified set of generators for the group. It is a central tool in combinatorial and geometric group theory. The structure and symmetry of Cayley graphs makes them particularly good candidates for constructing expander graphs.

In mathematics, Schur's lemma is an elementary but extremely useful statement in representation theory of groups and algebras. In the group case it says that if M and N are two finite-dimensional irreducible representations of a group G and φ is a linear map from M to N that commutes with the action of the group, then either φ is invertible, or φ = 0. An important special case occurs when M = N, i.e. φ is a self-map; in particular, any element of the center of a group must act as a scalar operator on M. The lemma is named after Issai Schur who used it to prove the Schur orthogonality relations and develop the basics of the representation theory of finite groups. Schur's lemma admits generalisations to Lie groups and Lie algebras, the most common of which are due to Jacques Dixmier and Daniel Quillen.

Chebotarev's density theorem in algebraic number theory describes statistically the splitting of primes in a given Galois extension K of the field of rational numbers. Generally speaking, a prime integer will factor into several ideal primes in the ring of algebraic integers of K. There are only finitely many patterns of splitting that may occur. Although the full description of the splitting of every prime p in a general Galois extension is a major unsolved problem, the Chebotarev density theorem says that the frequency of the occurrence of a given pattern, for all primes p less than a large integer N, tends to a certain limit as N goes to infinity. It was proved by Nikolai Chebotaryov in his thesis in 1922, published in.

<span class="mw-page-title-main">K3 surface</span> Type of smooth complex surface of kodaira dimension 0

In mathematics, a complex analytic K3 surface is a compact connected complex manifold of dimension 2 with а trivial canonical bundle and irregularity zero. An (algebraic) K3 surface over any field means a smooth proper geometrically connected algebraic surface that satisfies the same conditions. In the Enriques–Kodaira classification of surfaces, K3 surfaces form one of the four classes of minimal surfaces of Kodaira dimension zero. A simple example is the Fermat quartic surface

In mathematics, more specifically in group theory, the character of a group representation is a function on the group that associates to each group element the trace of the corresponding matrix. The character carries the essential information about the representation in a more condensed form. Georg Frobenius initially developed representation theory of finite groups entirely based on the characters, and without any explicit matrix realization of representations themselves. This is possible because a complex representation of a finite group is determined by its character. The situation with representations over a field of positive characteristic, so-called "modular representations", is more delicate, but Richard Brauer developed a powerful theory of characters in this case as well. Many deep theorems on the structure of finite groups use characters of modular representations.

The representation theory of groups is a part of mathematics which examines how groups act on given structures.

In quantum information theory, a quantum channel is a communication channel which can transmit quantum information, as well as classical information. An example of quantum information is the general dynamics of a qubit. An example of classical information is a text document transmitted over the Internet.

In mathematics, the Grothendieck group, or group of differences, of a commutative monoid M is a certain abelian group. This abelian group is constructed from M in the most universal way, in the sense that any abelian group containing a homomorphic image of M will also contain a homomorphic image of the Grothendieck group of M. The Grothendieck group construction takes its name from a specific case in category theory, introduced by Alexander Grothendieck in his proof of the Grothendieck–Riemann–Roch theorem, which resulted in the development of K-theory. This specific case is the monoid of isomorphism classes of objects of an abelian category, with the direct sum as its operation.

<span class="mw-page-title-main">Burnside's theorem</span> Mathematics, group theory

In mathematics, Burnside's theorem in group theory states that if G is a finite group of order where p and q are prime numbers, and a and b are non-negative integers, then G is solvable. Hence each non-Abelian finite simple group has order divisible by at least three distinct primes.

In mathematics, an Azumaya algebra is a generalization of central simple algebras to -algebras where need not be a field. Such a notion was introduced in a 1951 paper of Goro Azumaya, for the case where is a commutative local ring. The notion was developed further in ring theory, and in algebraic geometry, where Alexander Grothendieck made it the basis for his geometric theory of the Brauer group in Bourbaki seminars from 1964–65. There are now several points of access to the basic definitions.

In conformal field theory and representation theory, a W-algebra is an associative algebra that generalizes the Virasoro algebra. W-algebras were introduced by Alexander Zamolodchikov, and the name "W-algebra" comes from the fact that Zamolodchikov used the letter W for one of the elements of one of his examples.

In mathematics, the Fourier transform on finite groups is a generalization of the discrete Fourier transform from cyclic to arbitrary finite groups.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaf cohomology is a technique for producing functions with specified properties. Many geometric questions can be formulated as questions about the existence of sections of line bundles or of more general coherent sheaves; such sections can be viewed as generalized functions. Cohomology provides computable tools for producing sections, or explaining why they do not exist. It also provides invariants to distinguish one algebraic variety from another.

In mathematics, the term "graded" has a number of meanings, mostly related:

This is a glossary of representation theory in mathematics.

In representation theory of mathematics, the Waldspurger formula relates the special values of two L-functions of two related admissible irreducible representations. Let k be the base field, f be an automorphic form over k, π be the representation associated via the Jacquet–Langlands correspondence with f. Goro Shimura (1976) proved this formula, when and f is a cusp form; Günter Harder made the same discovery at the same time in an unpublished paper. Marie-France Vignéras (1980) proved this formula, when and f is a newform. Jean-Loup Waldspurger, for whom the formula is named, reproved and generalized the result of Vignéras in 1985 via a totally different method which was widely used thereafter by mathematicians to prove similar formulas.

In mathematics, especially in representation theory and algebraic geometry, the Beilinson–Bernstein localization theorem relates D-modules on flag varieties G/B to representations of the Lie algebra attached to a reductive group G. It was introduced by Beilinson & Bernstein (1981).

References

  1. Serre, Jean-Pierre (1977). Linear Representations of Finite Groups. New York, NY: Springer New York. ISBN   978-1-4684-9458-7. OCLC   853264255.

Further reading