Artin's theorem on induced characters

Last updated

In representation theory, a branch of mathematics, Artin's theorem, introduced by E. Artin, states that a character on a finite group is a rational linear combination of characters induced from all cyclic subgroups of the group.

Contents

There is a similar but somehow more precise theorem due to Brauer, which says that the theorem remains true if "rational" and "cyclic subgroup" are replaced with "integer" and "elementary subgroup".

Statement

In Linear Representation of Finite Groups Serre states in Chapter 9.2, 17 [1] the theorem in the following, more general way:

Let finite group, family of subgroups.

Then the following are equivalent:

This in turn implies the general statement, by choosing as all cyclic subgroups of .

Proof

Related Research Articles

<span class="mw-page-title-main">Quaternion group</span>

In group theory, the quaternion group Q8 (sometimes just denoted by Q) is a non-abelian group of order eight, isomorphic to the eight-element subset of the quaternions under multiplication. It is given by the group presentation

In mathematics, a character is a special kind of function from a group to a field. There are at least two distinct, but overlapping meanings. Other uses of the word "character" are almost always qualified.

In group theory, the induced representation is a representation of a group, G, which is constructed using a known representation of a subgroup H. Given a representation of H, the induced representation is, in a sense, the "most general" representation of G that extends the given one. Since it is often easier to find representations of the smaller group H than of G, the operation of forming induced representations is an important tool to construct new representations.

<span class="mw-page-title-main">Cayley graph</span> Graph defined from a mathematical group

In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem, and uses a specified set of generators for the group. It is a central tool in combinatorial and geometric group theory. The structure and symmetry of Cayley graphs makes them particularly good candidates for constructing families of expander graphs.

In mathematics, and in particular the theory of group representations, the regular representation of a group G is the linear representation afforded by the group action of G on itself by translation.

In mathematics, the projective special linear group PSL(2, 7), isomorphic to GL(3, 2), is a finite simple group that has important applications in algebra, geometry, and number theory. It is the automorphism group of the Klein quartic as well as the symmetry group of the Fano plane. With 168 elements, PSL(2, 7) is the smallest nonabelian simple group after the alternating group A5 with 60 elements, isomorphic to PSL(2, 5).

In mathematics, the Brauer group of a field K is an abelian group whose elements are Morita equivalence classes of central simple algebras over K, with addition given by the tensor product of algebras. It was defined by the algebraist Richard Brauer.

Chebotarev's density theorem in algebraic number theory describes statistically the splitting of primes in a given Galois extension K of the field of rational numbers. Generally speaking, a prime integer will factor into several ideal primes in the ring of algebraic integers of K. There are only finitely many patterns of splitting that may occur. Although the full description of the splitting of every prime p in a general Galois extension is a major unsolved problem, the Chebotarev density theorem says that the frequency of the occurrence of a given pattern, for all primes p less than a large integer N, tends to a certain limit as N goes to infinity. It was proved by Nikolai Chebotaryov in his thesis in 1922, published in.

In mathematics, more specifically in group theory, the character of a group representation is a function on the group that associates to each group element the trace of the corresponding matrix. The character carries the essential information about the representation in a more condensed form. Georg Frobenius initially developed representation theory of finite groups entirely based on the characters, and without any explicit matrix realization of representations themselves. This is possible because a complex representation of a finite group is determined by its character. The situation with representations over a field of positive characteristic, so-called "modular representations", is more delicate, but Richard Brauer developed a powerful theory of characters in this case as well. Many deep theorems on the structure of finite groups use characters of modular representations.

The representation theory of groups is a part of mathematics which examines how groups act on given structures.

<span class="mw-page-title-main">Burnside's theorem</span> Mathematic group theory

In mathematics, Burnside's theorem in group theory states that if G is a finite group of order where p and q are prime numbers, and a and b are non-negative integers, then G is solvable. Hence each non-Abelian finite simple group has order divisible by at least three distinct primes.

The Artin reciprocity law, which was established by Emil Artin in a series of papers, is a general theorem in number theory that forms a central part of global class field theory. The term "reciprocity law" refers to a long line of more concrete number theoretic statements which it generalized, from the quadratic reciprocity law and the reciprocity laws of Eisenstein and Kummer to Hilbert's product formula for the norm symbol. Artin's result provided a partial solution to Hilbert's ninth problem.

Brauer's theorem on induced characters, often known as Brauer's induction theorem, and named after Richard Brauer, is a basic result in the branch of mathematics known as character theory, within representation theory of a finite group.

In mathematics, Clifford theory, introduced by Alfred H. Clifford (1937), describes the relation between representations of a group and those of a normal subgroup.

In mathematics, especially in the area of algebra known as representation theory, the representation ring of a group is a ring formed from all the finite-dimensional linear representations of the group. Elements of the representation ring are sometimes called virtual representations. For a given group, the ring will depend on the base field of the representations. The case of complex coefficients is the most developed, but the case of algebraically closed fields of characteristic p where the Sylow p-subgroups are cyclic is also theoretically approachable.

In representation theory, a branch of mathematics, the Whittaker model is a realization of a representation of a reductive algebraic group such as GL2 over a finite or local or global field on a space of functions on the group. It is named after E. T. Whittaker even though he never worked in this area, because (Jacquet 1966, 1967) pointed out that for the group SL2(R) some of the functions involved in the representation are Whittaker functions.

In algebraic number theory, the conductor of a finite abelian extension of local or global fields provides a quantitative measure of the ramification in the extension. The definition of the conductor is related to the Artin map.

In mathematics, the Artin conductor is a number or ideal associated to a character of a Galois group of a local or global field, introduced by Emil Artin as an expression appearing in the functional equation of an Artin L-function.

This is a glossary of representation theory in mathematics.

In mathematics, specifically in representation theory, a semisimple representation is a linear representation of a group or an algebra that is a direct sum of simple representations. It is an example of the general mathematical notion of semisimplicity.

References

  1. Serre, Jean-Pierre (1977). Linear Representations of Finite Groups. New York, NY: Springer New York. ISBN   978-1-4684-9458-7. OCLC   853264255.

Further reading