Axiomatic (disambiguation)

Last updated

In mathematics, an axiomatic theory is one based on axioms.

An axiom or postulate is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Greek axíōma (ἀξίωμα) 'that which is thought worthy or fit' or 'that which commends itself as evident.'

Axiomatic may also refer to:

<i>Axiomatic</i> (book)

Axiomatic (ISBN 0-7528-1650-0) is a 1995 collection of short science fiction stories by Greg Egan. The stories all delve into different aspects of self and identity.

<i>Axiomatic</i> (album) 2005 studio album by Taxiride

Axiomatic is the third studio album by Australian rock band Taxiride, released in September 2005. Three singles were taken from this album, "Oh Yeah", "You Gotta Help Me" and "What Can I Say". Taxiride made it clear in interviews leading up to the release of this album that they would be breaking away from the radio-friendly pop-rock sound of their two previous albums, and instead they would adopt a more hard-rock feel. The album peaked at No. 91 in Australia in September 2005. Singer-songwriter Chris Bailey, from the Australian punk rock band, The Saints, co-wrote the song 'Everything + Nothing', also featured on their live album Electrophobia. Axiomatic was released in Australia, Japan, India and South East Asia.

See also

Related Research Articles

In mathematics, the axiom of regularity is an axiom of Zermelo–Fraenkel set theory that states that every non-empty set A contains an element that is disjoint from A. In first-order logic, the axiom reads:

Naïve set theory is any of several theories of sets used in the discussion of the foundations of mathematics. Unlike axiomatic set theories, which are defined using formal logic, naïve set theory is defined informally, in natural language. It describes the aspects of mathematical sets familiar in discrete mathematics, and suffices for the everyday use of set theory concepts in contemporary mathematics.

In mathematics, logic, philosophy, and formal systems, a primitive notion is a concept that is not defined in terms of previously defined concepts. It is often motivated informally, usually by an appeal to intuition and everyday experience. In an axiomatic theory, relations between primitive notions are restricted by axioms. Some authors refer to the latter as "defining" primitive notions by one or more axioms, but this can be misleading. Formal theories cannot dispense with primitive notions, under pain of infinite regress.

Set theory Branch of mathematics that studies sets

Set theory is a branch of mathematical logic that studies sets, which informally are collections of objects. Although any type of object can be collected into a set, set theory is applied most often to objects that are relevant to mathematics. The language of set theory can be used to define nearly all mathematical objects.

In axiomatic set theory and the branches of logic, mathematics, and computer science that use it, the axiom of extensionality, or axiom of extension, is one of the axioms of Zermelo–Fraenkel set theory.

In many popular versions of axiomatic set theory, the axiom schema of specification, also known as the axiom schema of separation, subset axiom scheme or axiom schema of restricted comprehension is an axiom schema. Essentially, it says that any definable subclass of a set is a set.

In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded.

In mathematics, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A theory consists of an axiomatic system and all its derived theorems. An axiomatic system that is completely described is a special kind of formal system. A formal theory typically means an axiomatic system, for example formulated within model theory. A formal proof is a complete rendition of a mathematical proof within a formal system.

A formal system is used to infer theorems from axioms according to a set of rules. These rules used to carry out the inference of theorems from axioms are known as the logical calculus of the formal system. A formal system is essentially an "axiomatic system". In 1921, David Hilbert proposed to use such system as the foundation for the knowledge in mathematics. A formal system may represent a well-defined system of abstract thought.

In set theory, several ways have been proposed to construct the natural numbers. These include the representation via von Neumann ordinals, commonly employed in axiomatic set theory, and a system based on equinumerosity that was proposed by Gottlob Frege and by Bertrand Russell.

In mathematics, the axiom of dependent choice, denoted by , is a weak form of the axiom of choice that is still sufficient to develop most of real analysis. It was introduced by Paul Bernays in a 1942 article that explores which set-theoretic axioms are needed to develop analysis.

In mathematical logic, an axiom schema generalizes the notion of axiom.

Non-well-founded set theories are variants of axiomatic set theory that allow sets to contain themselves and otherwise violate the rule of well-foundedness. In non-well-founded set theories, the foundation axiom of ZFC is replaced by axioms implying its negation.

Axiomatic design is a systems design methodology using matrix methods to systematically analyze the transformation of customer needs into functional requirements, design parameters, and process variables. Specifically, a set of functional requirements(FRs) are related to a set of design parameters (DPs) by a Design Matrix A:

Axiomatic quantum field theory is a mathematical discipline which aims to describe quantum field theory in terms of rigorous axioms. It is strongly associated with functional analysis and operator algebras, but has also been studied in recent years from a more geometric and functorial perspective.

An axiom is a proposition in mathematics and epistemology that is taken to be self-evident or is chosen as a starting point of a theory.

Tarski–Grothendieck set theory is an axiomatic set theory. It is a non-conservative extension of Zermelo–Fraenkel set theory (ZFC) and is distinguished from other axiomatic set theories by the inclusion of Tarski's axiom, which states that for each set there is a Grothendieck universe it belongs to. Tarski's axiom implies the existence of inaccessible cardinals, providing a richer ontology than that of conventional set theories such as ZFC. For example, adding this axiom supports category theory.

Foundations of geometry is the study of geometries as axiomatic systems. There are several sets of axioms which give rise to Euclidean geometry or to non-Euclidean geometries. These are fundamental to the study and of historical importance, but there are a great many modern geometries that are not Euclidean which can be studied from this viewpoint. The term axiomatic geometry can be applied to any geometry that is developed from an axiom system, but is often used to mean Euclidean geometry studied from this point of view. The completeness and independence of general axiomatic systems are important mathematical considerations, but there are also issues to do with the teaching of geometry which come into play.

In mathematical set theory, the axiom of adjunction states that for any two sets x, y there is a set w = x ∪ {y} given by "adjoining" the set y to the set x.